Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Regulation of glycogen breakdown and its consequences for skeletal muscle function after training

Regulation of glycogen breakdown and its consequences for skeletal muscle function after training Repeated bouts of physical exercise, i.e., training, induce mitochondrial biogenesis and result in improved physical performance and attenuation of glycogen breakdown during submaximal exercise. It has been suggested that as a consequence of the increased mitochondrial volume, a smaller degree of metabolic stress (e.g., smaller increases in ADP and Pi) is required to maintain mitochondrial respiration in the trained state during exercise at the same absolute intensity. The lower degree of Pi accumulation is believed to account for the diminished glycogen breakdown, since Pi is a substrate for glycogen phosphorylase, the rate-limiting enzyme for glycogenolysis. However, in this review, we present an alternative explanation for the diminished glycogen breakdown. Thus, the lower degree of metabolic stress after training is also associated with smaller increases in AMP (free concentration during contraction at specific intracellular sites) and this results in less activation of phosphorylase b (the non-phosphorylated form of phosphorylase), resulting in diminished glycogen breakdown. Concomitantly, the smaller accumulation of Pi, which interferes with cross-bridge function and intracellular Ca2+ handling, contributes to the increased fatigue resistance. The delay in glycogen depletion also contributes to enhanced performance during prolonged exercise by functioning as an energy reserve. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Regulation of glycogen breakdown and its consequences for skeletal muscle function after training

Mammalian Genome , Volume 25 (10) – Apr 29, 2014

Loading next page...
1
 
/lp/springer_journal/regulation-of-glycogen-breakdown-and-its-consequences-for-skeletal-ofpsTlG07G

References (109)

Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
DOI
10.1007/s00335-014-9519-x
pmid
24777203
Publisher site
See Article on Publisher Site

Abstract

Repeated bouts of physical exercise, i.e., training, induce mitochondrial biogenesis and result in improved physical performance and attenuation of glycogen breakdown during submaximal exercise. It has been suggested that as a consequence of the increased mitochondrial volume, a smaller degree of metabolic stress (e.g., smaller increases in ADP and Pi) is required to maintain mitochondrial respiration in the trained state during exercise at the same absolute intensity. The lower degree of Pi accumulation is believed to account for the diminished glycogen breakdown, since Pi is a substrate for glycogen phosphorylase, the rate-limiting enzyme for glycogenolysis. However, in this review, we present an alternative explanation for the diminished glycogen breakdown. Thus, the lower degree of metabolic stress after training is also associated with smaller increases in AMP (free concentration during contraction at specific intracellular sites) and this results in less activation of phosphorylase b (the non-phosphorylated form of phosphorylase), resulting in diminished glycogen breakdown. Concomitantly, the smaller accumulation of Pi, which interferes with cross-bridge function and intracellular Ca2+ handling, contributes to the increased fatigue resistance. The delay in glycogen depletion also contributes to enhanced performance during prolonged exercise by functioning as an energy reserve.

Journal

Mammalian GenomeSpringer Journals

Published: Apr 29, 2014

There are no references for this article.