Regulation of developmental senescence is conserved between Arabidopsis and Brassica napus

Regulation of developmental senescence is conserved between Arabidopsis and Brassica napus SAG12 is a developmentally controlled, senescence-specific gene from Arabidopsis which encodes a cysteine protease. Using SAG12 as a probe, we isolated two SAG12 homologues (BnSAG12–1 and BnSAG12–2) from Brassica napus. Structural comparisons and expression studies indicate that these two genes are orthologues of SAG12. The expression patterns of BnSAG12–1 and BnSAG12–2 in Arabidopsis demonstrate that the senescence-specific regulation of this class of cysteine proteases is conserved across these species. Gel-shift assays using the essential promoter regions of SAG12, BnSAG12–1, and BnSAG12–2 show that the extent of binding of a senescence-specific, DNA-binding protein from Arabidopsis is proportional to the expression levels of these genes in Arabidopsis. Therefore, the expression levels of these genes may reflect the affinities of the senescence-specific DNA-binding protein for the promoter element. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Regulation of developmental senescence is conserved between Arabidopsis and Brassica napus

Loading next page...
 
/lp/springer_journal/regulation-of-developmental-senescence-is-conserved-between-tUv7roXYVj
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006389803990
Publisher site
See Article on Publisher Site

Abstract

SAG12 is a developmentally controlled, senescence-specific gene from Arabidopsis which encodes a cysteine protease. Using SAG12 as a probe, we isolated two SAG12 homologues (BnSAG12–1 and BnSAG12–2) from Brassica napus. Structural comparisons and expression studies indicate that these two genes are orthologues of SAG12. The expression patterns of BnSAG12–1 and BnSAG12–2 in Arabidopsis demonstrate that the senescence-specific regulation of this class of cysteine proteases is conserved across these species. Gel-shift assays using the essential promoter regions of SAG12, BnSAG12–1, and BnSAG12–2 show that the extent of binding of a senescence-specific, DNA-binding protein from Arabidopsis is proportional to the expression levels of these genes in Arabidopsis. Therefore, the expression levels of these genes may reflect the affinities of the senescence-specific DNA-binding protein for the promoter element.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off