Regulation of cyclin-dependent kinases in Arabidopsis thaliana

Regulation of cyclin-dependent kinases in Arabidopsis thaliana In plants, different families of cyclin-dependent kinases (CDKs) and cyclins have been identified, indicating that also in plants the progression through the cell cycle is regulated by CDKs. In all eukaryotes, CDKs exert their activity through well-controlled phosphorylations of specific substrates on serine/threonine residues. Such post-translational modifications are universal mechanisms in signal transduction pathways. They allow the organism to differentiate, regulate growth and/or adapt to environmental changes, the latter being crucial for plants because of their sedentary life-style. This adaptation might explain the occurrence of a special CDK type with plant-specific features. This review focuses on the involvement of plant CDKs in different phases of the cell cycle in Arabidopsis thaliana and outlines their regulation by binding to other proteins, and by phosphorylation and dephosphorylation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Regulation of cyclin-dependent kinases in Arabidopsis thaliana

Loading next page...
 
/lp/springer_journal/regulation-of-cyclin-dependent-kinases-in-arabidopsis-thaliana-DXUaAn6lPS
Publisher
Springer Journals
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006409907831
Publisher site
See Article on Publisher Site

Abstract

In plants, different families of cyclin-dependent kinases (CDKs) and cyclins have been identified, indicating that also in plants the progression through the cell cycle is regulated by CDKs. In all eukaryotes, CDKs exert their activity through well-controlled phosphorylations of specific substrates on serine/threonine residues. Such post-translational modifications are universal mechanisms in signal transduction pathways. They allow the organism to differentiate, regulate growth and/or adapt to environmental changes, the latter being crucial for plants because of their sedentary life-style. This adaptation might explain the occurrence of a special CDK type with plant-specific features. This review focuses on the involvement of plant CDKs in different phases of the cell cycle in Arabidopsis thaliana and outlines their regulation by binding to other proteins, and by phosphorylation and dephosphorylation.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off