Regulation of Cl− Secretion by Extracellular ATP in Cultured Mouse Endometrial Epithelium

Regulation of Cl− Secretion by Extracellular ATP in Cultured Mouse Endometrial Epithelium The present study explored regulation of electrogenic ion transport across cultured mouse endometrial epithelium by extracellular ATP using the short-circuit current (I SC ) and the patch-clamp techniques. The cultured endometrial monolayers responded to apical application of ATP with an increase in I SC in a concentration-dependent manner (EC50 at 3 μm). Replacement of Cl− in the bathing solution or treatment of the cells with Cl− channel blockers, DIDS and DPC, markedly reduced the I SC , indicating that a substantial portion of the ATP-activated I SC was Cl−-dependent. Amiloride at a concentration (10 μm) known to block Na+ channels was found to have no effect on the ATP-activated I SC excluding the involvement of Na+ absorption. Adenosine was found to have little effect on the I SC excluding the involvement of P1 receptors. The effect of UTP, a potent P2U receptor agonist on the I SC was similar to that of ATP while potent P2X agonist, α-β-Methylene adenosine 5′-triphosphate (α-β-M-ATP) and P2Y agonist, 2-methylthio-adenosine triphosphate (2-M-ATP), were found to be ineffective. The effect of ATP on I SC was mimicked by the Ca2+ ionophore, ionomycin, indicating a role of intracellular Ca2+ in mediating the ATP response. Confocal microscopic study also demonstrated a rise in intracellular Ca2+ upon stimulation by extracellular ATP. In voltage-clamped endometrial epithelial cells, ATP elicited a whole-cell Cl− current which exhibited outward rectification and delayed activation and inactivation at depolarizing and hyperpolarizing voltages, respectively. The results of the present study demonstrate the presence of a regulatory mechanism involving extracellular ATP and P2U purinoceptors for endometrial Cl− secretion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Regulation of Cl− Secretion by Extracellular ATP in Cultured Mouse Endometrial Epithelium

Loading next page...
 
/lp/springer_journal/regulation-of-cl-secretion-by-extracellular-atp-in-cultured-mouse-ljCp1fodAx
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1997 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900186
Publisher site
See Article on Publisher Site

Abstract

The present study explored regulation of electrogenic ion transport across cultured mouse endometrial epithelium by extracellular ATP using the short-circuit current (I SC ) and the patch-clamp techniques. The cultured endometrial monolayers responded to apical application of ATP with an increase in I SC in a concentration-dependent manner (EC50 at 3 μm). Replacement of Cl− in the bathing solution or treatment of the cells with Cl− channel blockers, DIDS and DPC, markedly reduced the I SC , indicating that a substantial portion of the ATP-activated I SC was Cl−-dependent. Amiloride at a concentration (10 μm) known to block Na+ channels was found to have no effect on the ATP-activated I SC excluding the involvement of Na+ absorption. Adenosine was found to have little effect on the I SC excluding the involvement of P1 receptors. The effect of UTP, a potent P2U receptor agonist on the I SC was similar to that of ATP while potent P2X agonist, α-β-Methylene adenosine 5′-triphosphate (α-β-M-ATP) and P2Y agonist, 2-methylthio-adenosine triphosphate (2-M-ATP), were found to be ineffective. The effect of ATP on I SC was mimicked by the Ca2+ ionophore, ionomycin, indicating a role of intracellular Ca2+ in mediating the ATP response. Confocal microscopic study also demonstrated a rise in intracellular Ca2+ upon stimulation by extracellular ATP. In voltage-clamped endometrial epithelial cells, ATP elicited a whole-cell Cl− current which exhibited outward rectification and delayed activation and inactivation at depolarizing and hyperpolarizing voltages, respectively. The results of the present study demonstrate the presence of a regulatory mechanism involving extracellular ATP and P2U purinoceptors for endometrial Cl− secretion.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Mar 1, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off