Regulation of CCM genes in Chlamydomonas reinhardtii during conditions of light–dark cycles in synchronous cultures

Regulation of CCM genes in Chlamydomonas reinhardtii during conditions of light–dark cycles in... We have investigated transcript level changes of CO2-concentrating mechanism (CCM) genes during light–dark (12 h:12 h) cycles in synchronized Chlamydomonas reinhardtii at air-level CO2. CCM gene transcript levels vary at various times of light–dark cycles, even at same air-level CO2. Transcripts of inorganic carbon transporter genes (HLA3, LCI1, CCP1, CCP2 and LCIA) and mitochondrial carbonic anhydrase genes (CAH4 and CAH5) are up regulated in light, following which their levels decline in dark. Contrastingly, transcripts of chloroplast carbonic anhydrases namely CAH6, CAH3 and LCIB are up regulated in dark. CAH3 and LCIB transcript levels reached maximum by the end of dark, followed by high expression into early light period. In contrast, CAH6 transcript level stayed high in dark, followed by high level even in light. Moreover, the up regulation of transcripts in dark was undone by high CO2, suggesting that the dark induced CCM transcripts were regulated by CO2 even in dark when CCM is absent. Thus while the CAH3 transcript level modulations appear not to positively correlate with that of CCM, the protein regulation matched with CCM status: in spite of high transcript levels in dark, CAH3 protein reached peak level only in light and localized entirely to pyrenoid, a site functionally relevant for CCM. Moreover, in dark, CAH3 protein level not only reduced but also the protein localized as a diffused pattern in chloroplast. We propose that transcription of most CCM genes, followed by protein level changes including their intracellular localization of a subset is subject to light–dark cycles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Regulation of CCM genes in Chlamydomonas reinhardtii during conditions of light–dark cycles in synchronous cultures

Loading next page...
 
/lp/springer_journal/regulation-of-ccm-genes-in-chlamydomonas-reinhardtii-during-conditions-Up7JJFZdeR
Publisher
Springer Netherlands
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-014-0183-z
Publisher site
See Article on Publisher Site

Abstract

We have investigated transcript level changes of CO2-concentrating mechanism (CCM) genes during light–dark (12 h:12 h) cycles in synchronized Chlamydomonas reinhardtii at air-level CO2. CCM gene transcript levels vary at various times of light–dark cycles, even at same air-level CO2. Transcripts of inorganic carbon transporter genes (HLA3, LCI1, CCP1, CCP2 and LCIA) and mitochondrial carbonic anhydrase genes (CAH4 and CAH5) are up regulated in light, following which their levels decline in dark. Contrastingly, transcripts of chloroplast carbonic anhydrases namely CAH6, CAH3 and LCIB are up regulated in dark. CAH3 and LCIB transcript levels reached maximum by the end of dark, followed by high expression into early light period. In contrast, CAH6 transcript level stayed high in dark, followed by high level even in light. Moreover, the up regulation of transcripts in dark was undone by high CO2, suggesting that the dark induced CCM transcripts were regulated by CO2 even in dark when CCM is absent. Thus while the CAH3 transcript level modulations appear not to positively correlate with that of CCM, the protein regulation matched with CCM status: in spite of high transcript levels in dark, CAH3 protein reached peak level only in light and localized entirely to pyrenoid, a site functionally relevant for CCM. Moreover, in dark, CAH3 protein level not only reduced but also the protein localized as a diffused pattern in chloroplast. We propose that transcription of most CCM genes, followed by protein level changes including their intracellular localization of a subset is subject to light–dark cycles.

Journal

Plant Molecular BiologySpringer Journals

Published: Mar 4, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off