Regulation of an Outwardly Rectifying Chloride Conductance in Renal Epithelial Cells by External and Internal Calcium

Regulation of an Outwardly Rectifying Chloride Conductance in Renal Epithelial Cells by External... We have used perforated patch clamp and Fura-2 microfluorescence measurements to study Ca2+-activated Cl− currents in cultured mouse renal inner medullary collecting duct cells (mIMCD-3). The conductance was spontaneously active under resting conditions and whole cell currents were time and voltage-independent with an outwardly rectifying current-voltage relationship. The channel blockers DIDS, niflumic acid, glybenclamide and NPPB reversibly decreased the basal currents, whereas the sulfhydryl agent, DTT produced an irreversible inhibition. Increasing or decreasing extracellular calcium produced parallel changes in the size of the basal currents. Variations in external Ca2+ were associated with corresponding changes in free cytosolic Ca2+ concentration. Increasing cytosolic Ca2+ by extracellular ATP or ionomycin, further enhanced Cl− conductance, with whole cell currents displaying identical biophysical properties to the basal currents. However, the agonist-stimulated currents were now increased by DTT exposure, but still inhibited by the other channel blockers. Using RT-PCR, three distinct mRNA transcripts belonging to the CLCA family of Ca2+-activated Cl− channel proteins were identified, two of which represent novel sequences. Whether different channels underlie the basal and agonist-stimulated currents in mIMCD-3 cells is unclear. Our findings establish a novel link between alterations in external and internal Ca2+ and the activity of Ca2+-activated Cl− transport in these cells. The Journal of Membrane Biology Springer Journals

Regulation of an Outwardly Rectifying Chloride Conductance in Renal Epithelial Cells by External and Internal Calcium

Loading next page...
Copyright © Inc. by 2001 Springer-Verlag New York
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial