Regularized Latent Class Analysis with Application in Cognitive Diagnosis

Regularized Latent Class Analysis with Application in Cognitive Diagnosis Diagnostic classification models are confirmatory in the sense that the relationship between the latent attributes and responses to items is specified or parameterized. Such models are readily interpretable with each component of the model usually having a practical meaning. However, parameterized diagnostic classification models are sometimes too simple to capture all the data patterns, resulting in significant model lack of fit. In this paper, we attempt to obtain a compromise between interpretability and goodness of fit by regularizing a latent class model. Our approach starts with minimal assumptions on the data structure, followed by suitable regularization to reduce complexity, so that readily interpretable, yet flexible model is obtained. An expectation–maximization-type algorithm is developed for efficient computation. It is shown that the proposed approach enjoys good theoretical properties. Results from simulation studies and a real application are presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Psychometrika Springer Journals

Regularized Latent Class Analysis with Application in Cognitive Diagnosis

Loading next page...
 
/lp/springer_journal/regularized-latent-class-analysis-with-application-in-cognitive-p2LEMkN1iD
Publisher
Springer US
Copyright
Copyright © 2016 by The Psychometric Society
Subject
Psychology; Psychometrics; Assessment, Testing and Evaluation; Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law; Statistical Theory and Methods
ISSN
0033-3123
eISSN
1860-0980
D.O.I.
10.1007/s11336-016-9545-6
Publisher site
See Article on Publisher Site

Abstract

Diagnostic classification models are confirmatory in the sense that the relationship between the latent attributes and responses to items is specified or parameterized. Such models are readily interpretable with each component of the model usually having a practical meaning. However, parameterized diagnostic classification models are sometimes too simple to capture all the data patterns, resulting in significant model lack of fit. In this paper, we attempt to obtain a compromise between interpretability and goodness of fit by regularizing a latent class model. Our approach starts with minimal assumptions on the data structure, followed by suitable regularization to reduce complexity, so that readily interpretable, yet flexible model is obtained. An expectation–maximization-type algorithm is developed for efficient computation. It is shown that the proposed approach enjoys good theoretical properties. Results from simulation studies and a real application are presented.

Journal

PsychometrikaSpringer Journals

Published: Nov 30, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off