Regularization of Singularities in the Weighted Summation of Dirac-Delta Functions for the Spectral Solution of Hyperbolic Conservation Laws

Regularization of Singularities in the Weighted Summation of Dirac-Delta Functions for the... Singular source terms expressed as weighted summations of Dirac-delta functions are regularized through approximation theory with convolution operators. We consider the numerical solution of scalar and one-dimensional hyperbolic conservation laws with the singular source by spectral Chebyshev collocation methods. The regularization is obtained by convolution with a high-order compactly supported Dirac-delta approximation whose overall accuracy is controlled by the number of vanishing moments, degree of smoothness and length of the support (scaling parameter). An optimal scaling parameter that leads to a high-order accurate representation of the singular source at smooth parts and full convergence order away from the singularities in the spectral solution is derived. The accuracy of the regularization and the spectral solution is assessed by solving an advection and Burgers equation with smooth initial data. Numerical results illustrate the enhanced accuracy of the spectral method through the proposed regularization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Scientific Computing Springer Journals

Regularization of Singularities in the Weighted Summation of Dirac-Delta Functions for the Spectral Solution of Hyperbolic Conservation Laws

Loading next page...
 
/lp/springer_journal/regularization-of-singularities-in-the-weighted-summation-of-dirac-0TEHcrvKew
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Mathematics; Algorithms; Computational Mathematics and Numerical Analysis; Mathematical and Computational Engineering; Theoretical, Mathematical and Computational Physics
ISSN
0885-7474
eISSN
1573-7691
D.O.I.
10.1007/s10915-017-0389-8
Publisher site
See Article on Publisher Site

Abstract

Singular source terms expressed as weighted summations of Dirac-delta functions are regularized through approximation theory with convolution operators. We consider the numerical solution of scalar and one-dimensional hyperbolic conservation laws with the singular source by spectral Chebyshev collocation methods. The regularization is obtained by convolution with a high-order compactly supported Dirac-delta approximation whose overall accuracy is controlled by the number of vanishing moments, degree of smoothness and length of the support (scaling parameter). An optimal scaling parameter that leads to a high-order accurate representation of the singular source at smooth parts and full convergence order away from the singularities in the spectral solution is derived. The accuracy of the regularization and the spectral solution is assessed by solving an advection and Burgers equation with smooth initial data. Numerical results illustrate the enhanced accuracy of the spectral method through the proposed regularization.

Journal

Journal of Scientific ComputingSpringer Journals

Published: Feb 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off