Region-driven distance regularized level set evolution for change detection in remote sensing images

Region-driven distance regularized level set evolution for change detection in remote sensing images Change detection is a fundamental task in the interpretation and understanding of remote sensing images. The aim is to partition the difference images acquired from multitemporal satellite images into changed and unchanged regions. Level set method is a promising way for remote sensing images change detection among the existed methods. Unfortunately, re-initialization, a necessary step in classical level set methods is known a complex and time-consuming process, which may limits their practical application in remote sensing images change detection. In this paper, we present an unsupervised change detection approach for remote sensing image based on an improved region-based active contour model without re-initialization. In order to eliminate the process for re-initialization and reduce the numerical errors caused by re-initialization, we describe an improving level set method for remote sensing images change detection. The proposed method introduced a distance regularization term into the energy function which could maintain a desired shape of the level set function and keep a signed distance profile near the zero level set. The experimental results on real multi-temporal remote sensing images demonstrate the advantages of our method in terms of human visual perception and segmentation accuracy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Region-driven distance regularized level set evolution for change detection in remote sensing images

Loading next page...
 
/lp/springer_journal/region-driven-distance-regularized-level-set-evolution-for-change-X0uTSlRkOk
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-017-4650-9
Publisher site
See Article on Publisher Site

Abstract

Change detection is a fundamental task in the interpretation and understanding of remote sensing images. The aim is to partition the difference images acquired from multitemporal satellite images into changed and unchanged regions. Level set method is a promising way for remote sensing images change detection among the existed methods. Unfortunately, re-initialization, a necessary step in classical level set methods is known a complex and time-consuming process, which may limits their practical application in remote sensing images change detection. In this paper, we present an unsupervised change detection approach for remote sensing image based on an improved region-based active contour model without re-initialization. In order to eliminate the process for re-initialization and reduce the numerical errors caused by re-initialization, we describe an improving level set method for remote sensing images change detection. The proposed method introduced a distance regularization term into the energy function which could maintain a desired shape of the level set function and keep a signed distance profile near the zero level set. The experimental results on real multi-temporal remote sensing images demonstrate the advantages of our method in terms of human visual perception and segmentation accuracy.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Apr 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off