Regeneration of the nervous and muscular system after caudal amputation in the polychaete Alitta virens (Annelida: Nereididae)

Regeneration of the nervous and muscular system after caudal amputation in the polychaete Alitta... Regenerating segments in polychaetes offer a vivid example of epimorphic recovery of the lost organs and tissues. It is also a promising object for studying positional information and the mechanisms maintaining the body integrity. With the aim to develop a convenient standardized model, we described the dynamics of recovery of the major anatomical structures and created a staging system for the caudal regeneration in Alitta virens. In average the normal organization of the posterior body end is restored within 10 days after amputation (dpa). The whole regenerative process was divided into 5 stages: (1) wound healing (0–1 dpa), (2) blastema formation (1–2 dpa), (3) patterning and growth of the blastema (2–3 dpa), (4) differentiation of the first regenerated segment (3–5 dpa), (5) formation and differentiation of the subsequent 5–6 segments (5–10 dpa). The regeneration is carried out mainly by epimorphosis, although the elements of intercalary growth as well as the morphallactic transformation of the stump have been noted. Terminal structures of the pygidium (muscles of the anal sphincter, pygidial cavity, pygidial ring nerve, pygidial cirri) appear at stages 1–3, and then (from stage 3) the formation of new metameres begins in front of the pygidium. Differentiation of the first newborn segment is associated with the tissue remodeling in the last old segment. Formation of the next segments resembles accelerated postlarval growth. The neural elements of the regenerative bud are developing faster than the surrounding muscles. The neurites extending from the CNS and PNS come to the surface of the wound epithelium at stage 1. Later, nerve fibers from the CNS lengthen and thicken along with the growth of the regenerative bud. Ganglion, parapodial nerves, oblique muscles and coeloms of the first segment are detected at stage 4. Longitudinal muscles regenerate in anterior to posterior progression, being constantly in contact with the corresponding fibers of the old tissues. All other muscles differentiate from blastemal cells in isolation from the old musculature of the stump. Our data promote the further using of the posterior body end regeneration in A. virens as an experimental model for resolving crucial problems of developmental biology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Regeneration of the nervous and muscular system after caudal amputation in the polychaete Alitta virens (Annelida: Nereididae)

Loading next page...
 
/lp/springer_journal/regeneration-of-the-nervous-and-muscular-system-after-caudal-uVJ4vAZ22w
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Inc.
Subject
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360417030079
Publisher site
See Article on Publisher Site

Abstract

Regenerating segments in polychaetes offer a vivid example of epimorphic recovery of the lost organs and tissues. It is also a promising object for studying positional information and the mechanisms maintaining the body integrity. With the aim to develop a convenient standardized model, we described the dynamics of recovery of the major anatomical structures and created a staging system for the caudal regeneration in Alitta virens. In average the normal organization of the posterior body end is restored within 10 days after amputation (dpa). The whole regenerative process was divided into 5 stages: (1) wound healing (0–1 dpa), (2) blastema formation (1–2 dpa), (3) patterning and growth of the blastema (2–3 dpa), (4) differentiation of the first regenerated segment (3–5 dpa), (5) formation and differentiation of the subsequent 5–6 segments (5–10 dpa). The regeneration is carried out mainly by epimorphosis, although the elements of intercalary growth as well as the morphallactic transformation of the stump have been noted. Terminal structures of the pygidium (muscles of the anal sphincter, pygidial cavity, pygidial ring nerve, pygidial cirri) appear at stages 1–3, and then (from stage 3) the formation of new metameres begins in front of the pygidium. Differentiation of the first newborn segment is associated with the tissue remodeling in the last old segment. Formation of the next segments resembles accelerated postlarval growth. The neural elements of the regenerative bud are developing faster than the surrounding muscles. The neurites extending from the CNS and PNS come to the surface of the wound epithelium at stage 1. Later, nerve fibers from the CNS lengthen and thicken along with the growth of the regenerative bud. Ganglion, parapodial nerves, oblique muscles and coeloms of the first segment are detected at stage 4. Longitudinal muscles regenerate in anterior to posterior progression, being constantly in contact with the corresponding fibers of the old tissues. All other muscles differentiate from blastemal cells in isolation from the old musculature of the stump. Our data promote the further using of the posterior body end regeneration in A. virens as an experimental model for resolving crucial problems of developmental biology.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Jun 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off