Reference-free-independent quantum key distribution immune to detector side channel attacks

Reference-free-independent quantum key distribution immune to detector side channel attacks Usually, a shared reference frame is indispensable for practical quantum key distribution (QKD) systems. As a result, most QKD systems need active alignment of reference frame due to the unknown and slowly variances of reference frame introduced by environment. Quite interestingly, reference-free-independent (RFI) QKD can generate secret-key bits without alignment of reference frame. However, RFI QKD may be still vulnerable to detector side channel attacks. Here, we propose a new RFI QKD protocol, in which all detector side channels are removed. Furthermore, our protocol can still tolerate unknown and slow variance of reference frame without active alignment. And a numerical simulation shows that long security distance is probable in this protocol. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Reference-free-independent quantum key distribution immune to detector side channel attacks

Loading next page...
1
 
/lp/springer_journal/reference-free-independent-quantum-key-distribution-immune-to-detector-gr0KMLmPuQ
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-013-0726-2
Publisher site
See Article on Publisher Site

Abstract

Usually, a shared reference frame is indispensable for practical quantum key distribution (QKD) systems. As a result, most QKD systems need active alignment of reference frame due to the unknown and slowly variances of reference frame introduced by environment. Quite interestingly, reference-free-independent (RFI) QKD can generate secret-key bits without alignment of reference frame. However, RFI QKD may be still vulnerable to detector side channel attacks. Here, we propose a new RFI QKD protocol, in which all detector side channels are removed. Furthermore, our protocol can still tolerate unknown and slow variance of reference frame without active alignment. And a numerical simulation shows that long security distance is probable in this protocol.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jan 16, 2014

References

  • Experimental quantum key distribution with decoy states
    Zhao, Y; Qi, B; Ma, X; Lo, H-K; Qian, L
  • Experimental demonstration of free-space decoy-state quantum key distribution over 144 km
    Schmitt-Manderbach, T
  • Experimental decoy state quantum key distribution over 120 km fibre
    Yin, Z.-Q.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off