Reductive cleavage of methyl orange under formation of a redox-active hydroquinone/polyaniline nanocomposite on an electrode modified with MWCNTs, and its application to flow injection analysis of ascorbic acid at low potential and neutral pH value

Reductive cleavage of methyl orange under formation of a redox-active hydroquinone/polyaniline... The authors report on the electrochemical degradation of the dye Methyl Orange (MO) on a glassy carbon electrode (GCE) modified with multiwalled carbon nanotubes. Continuous electrochemical cycling of the modified electrode in pH 7 solution leads to reductive cleavage of the azo bond of MO to form intermediate amines such as aniline-4-sulfonic acid and 1,4-diaminobenzene. These are further converted to a highly redox-active composite consisting of quinone and polyaniline derivative respectively on MWCNT. Cyclic voltammetric experiments display two well-defined redox peaks at an equilibrium potential (E1/2) of about 0 V (A1/C1) and 0.2 V (A2/C2) vs Ag/AgCl. Physicochemical characterizations such as FT-IR and in-situ UV-vis spectroelectrochemistry support the mechanism of cleavage of MO. The composite modified electrode is shown to be a viable sensor for use in flow injection amperometric analysis of ascorbic acid (AA; vitamin C) at a potential of −0.15 V (vs Ag/AgCl). No interferences were observed with cysteine, glucose, dopamine, citric acid, nitrite, and uric acid. The measured current is linearly related to the AA concentration in the range from 1 μM to 700 μM, with a 115 nM limit of detection (at an S/N ratio of 3). The method was successfully applied to the selective quantification of AA in two pharmaceutical samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microchimica Acta Springer Journals

Reductive cleavage of methyl orange under formation of a redox-active hydroquinone/polyaniline nanocomposite on an electrode modified with MWCNTs, and its application to flow injection analysis of ascorbic acid at low potential and neutral pH value

Loading next page...
 
/lp/springer_journal/reductive-cleavage-of-methyl-orange-under-formation-of-a-redox-active-l2iI6ZnzhS
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag Wien
Subject
Chemistry; Nanochemistry; Nanotechnology; Characterization and Evaluation of Materials; Analytical Chemistry; Microengineering
ISSN
0026-3672
eISSN
1436-5073
D.O.I.
10.1007/s00604-017-2339-4
Publisher site
See Article on Publisher Site

Abstract

The authors report on the electrochemical degradation of the dye Methyl Orange (MO) on a glassy carbon electrode (GCE) modified with multiwalled carbon nanotubes. Continuous electrochemical cycling of the modified electrode in pH 7 solution leads to reductive cleavage of the azo bond of MO to form intermediate amines such as aniline-4-sulfonic acid and 1,4-diaminobenzene. These are further converted to a highly redox-active composite consisting of quinone and polyaniline derivative respectively on MWCNT. Cyclic voltammetric experiments display two well-defined redox peaks at an equilibrium potential (E1/2) of about 0 V (A1/C1) and 0.2 V (A2/C2) vs Ag/AgCl. Physicochemical characterizations such as FT-IR and in-situ UV-vis spectroelectrochemistry support the mechanism of cleavage of MO. The composite modified electrode is shown to be a viable sensor for use in flow injection amperometric analysis of ascorbic acid (AA; vitamin C) at a potential of −0.15 V (vs Ag/AgCl). No interferences were observed with cysteine, glucose, dopamine, citric acid, nitrite, and uric acid. The measured current is linearly related to the AA concentration in the range from 1 μM to 700 μM, with a 115 nM limit of detection (at an S/N ratio of 3). The method was successfully applied to the selective quantification of AA in two pharmaceutical samples.

Journal

Microchimica ActaSpringer Journals

Published: Jun 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off