Reduction of the number of mutant copies of mitochondrial DNA in tissues of irradiated mice in the postradiation period

Reduction of the number of mutant copies of mitochondrial DNA in tissues of irradiated mice in... Changes in the number of mutant copies of mitochondrial DNA (mtDNA) were studied in the brain and spleen tissues of mice after their X-irradiation at a dose of 5 Gy. For this purpose, heteroduplexes obtained via hybridization of the products of PCR amplification of mtDNA (ND3 gene and two D-loop regions) from irradiated and control mice were digested with the CelI nuclease capable of specific mismatch cleavage. Heteroduplexes obtained via hybridization of the products of PCR amplification of mtDNA from irrradiated and control mice were digested by the CelI nuclease to a greater degree than heteroduplexes of the PCR products of mtDNA of mice from the control group. This suggests the presence of mutations in mtDNA regions in irradiated mice. Digestion by the CelI nuclease of heteroduplexes obtained via hybridization of the PCR products of mtDNA (ND3 gene and D-loop regions) on day 8 after irradiation is essentially more efficient than digestion of heteroduplexes obtained via hybridization of the PCR products of mtDNA isolated from mouse tissues on days 14 and 28 of the postradiation period. These results indicate a reduction in the number of mtDNA copies with mutations in tissues of irradiated mice by day 28 of the postradiation period. The reduction in the level of mutant mtDNA copies by this term is especially significant in the spleen. The total number of mtDNA copies in the mouse brain and spleen tissues estimated by real-time PCR, relative to the nuclear β-actin gene, is also decreased by 30–50% as compared to the control on days 8 to 28 after irradiation. The results of the study suggest that mutant mtDNA copies are eliminated from tissues of irradiated animals in the postradiation period. This elimination can be regarded either as a result of selective degradation of mitochondria carrying mutant DNA copies or as a result of cell death being continued in tissues of irradiated animals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Reduction of the number of mutant copies of mitochondrial DNA in tissues of irradiated mice in the postradiation period

Loading next page...
 
/lp/springer_journal/reduction-of-the-number-of-mutant-copies-of-mitochondrial-dna-in-3KpFhfEJVO
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795409070114
Publisher site
See Article on Publisher Site

Abstract

Changes in the number of mutant copies of mitochondrial DNA (mtDNA) were studied in the brain and spleen tissues of mice after their X-irradiation at a dose of 5 Gy. For this purpose, heteroduplexes obtained via hybridization of the products of PCR amplification of mtDNA (ND3 gene and two D-loop regions) from irradiated and control mice were digested with the CelI nuclease capable of specific mismatch cleavage. Heteroduplexes obtained via hybridization of the products of PCR amplification of mtDNA from irrradiated and control mice were digested by the CelI nuclease to a greater degree than heteroduplexes of the PCR products of mtDNA of mice from the control group. This suggests the presence of mutations in mtDNA regions in irradiated mice. Digestion by the CelI nuclease of heteroduplexes obtained via hybridization of the PCR products of mtDNA (ND3 gene and D-loop regions) on day 8 after irradiation is essentially more efficient than digestion of heteroduplexes obtained via hybridization of the PCR products of mtDNA isolated from mouse tissues on days 14 and 28 of the postradiation period. These results indicate a reduction in the number of mtDNA copies with mutations in tissues of irradiated mice by day 28 of the postradiation period. The reduction in the level of mutant mtDNA copies by this term is especially significant in the spleen. The total number of mtDNA copies in the mouse brain and spleen tissues estimated by real-time PCR, relative to the nuclear β-actin gene, is also decreased by 30–50% as compared to the control on days 8 to 28 after irradiation. The results of the study suggest that mutant mtDNA copies are eliminated from tissues of irradiated animals in the postradiation period. This elimination can be regarded either as a result of selective degradation of mitochondria carrying mutant DNA copies or as a result of cell death being continued in tissues of irradiated animals.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Jul 23, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off