Reduction and fragmentation of CS2 at the surface of electron-rich MgO: an EPR study

Reduction and fragmentation of CS2 at the surface of electron-rich MgO: an EPR study Sulfur contamination of alkaline earth oxide surfaces has important consequences in many fields of chemistry, such as surface science and catalysis. We used the Electron Paramagnetic Resonance (EPR) technique to study the interaction of CS2 molecules under different pressure and temperature conditions, with the bare and electron-enriched surface of MgO. CS2 reacts on the oxide surface through two distinct reaction paths, one leading to diamagnetic species, the other to paramagnetic surface entities. Both these reaction paths lead to the fragmentation of the CS2 molecule and, in some cases to oligomerization processes. EPR experiments allowed to follow the formation of the unstable CS 2 − radical intermediate and its evolution through formation of several surface radicals like S−, S 3 − and S n − (n ⩾ 3), depending on the reaction conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Reduction and fragmentation of CS2 at the surface of electron-rich MgO: an EPR study

Loading next page...
 
/lp/springer_journal/reduction-and-fragmentation-of-cs2-at-the-surface-of-electron-rich-mgo-j3zDrZeGRV
Publisher
Springer Journals
Copyright
Copyright © 2006 by VSP
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856706778606516
Publisher site
See Article on Publisher Site

Abstract

Sulfur contamination of alkaline earth oxide surfaces has important consequences in many fields of chemistry, such as surface science and catalysis. We used the Electron Paramagnetic Resonance (EPR) technique to study the interaction of CS2 molecules under different pressure and temperature conditions, with the bare and electron-enriched surface of MgO. CS2 reacts on the oxide surface through two distinct reaction paths, one leading to diamagnetic species, the other to paramagnetic surface entities. Both these reaction paths lead to the fragmentation of the CS2 molecule and, in some cases to oligomerization processes. EPR experiments allowed to follow the formation of the unstable CS 2 − radical intermediate and its evolution through formation of several surface radicals like S−, S 3 − and S n − (n ⩾ 3), depending on the reaction conditions.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off