Reducing the lightpath establishing time of FWM-aware dynamic RWA for wavelength-routed optical networks

Reducing the lightpath establishing time of FWM-aware dynamic RWA for wavelength-routed optical... A dynamic routing and wavelength allocation technique with an interplay between physical and network layer parameters encompassing Four-wave mixing (FWM) awareness and teletraffic performance of wavelength-routed optical networks has previously been proposed for a distributed approach. In this article, we present a fast computational algorithm for our routing and wavelength assignment (RWA) encompassing FWM-induced crosstalk. The objective is to minimize the time of establishing a dynamic lightpath. For this purpose, a precomputed matrix of FWM crosstalk products is used in an adapted version of the FWM-aware dynamic RWA algorithm. The approach is validated through simulations showing improvement up to 30–50% on the provisioning time of lightpaths for different network topologies compared to an online full computational scheme. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Reducing the lightpath establishing time of FWM-aware dynamic RWA for wavelength-routed optical networks

Loading next page...
 
/lp/springer_journal/reducing-the-lightpath-establishing-time-of-fwm-aware-dynamic-rwa-for-Wx93msyZN0
Publisher
Springer US
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-008-0182-6
Publisher site
See Article on Publisher Site

Abstract

A dynamic routing and wavelength allocation technique with an interplay between physical and network layer parameters encompassing Four-wave mixing (FWM) awareness and teletraffic performance of wavelength-routed optical networks has previously been proposed for a distributed approach. In this article, we present a fast computational algorithm for our routing and wavelength assignment (RWA) encompassing FWM-induced crosstalk. The objective is to minimize the time of establishing a dynamic lightpath. For this purpose, a precomputed matrix of FWM crosstalk products is used in an adapted version of the FWM-aware dynamic RWA algorithm. The approach is validated through simulations showing improvement up to 30–50% on the provisioning time of lightpaths for different network topologies compared to an online full computational scheme.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Dec 29, 2008

References

  • WDM network design by ILP models based on flow aggregation
    Tornatore, M.; Maier, G.; Pattavina, A.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off