Reduced-order models for aerodynamic applications, loads and MDO

Reduced-order models for aerodynamic applications, loads and MDO This article gives an overview of reduced-order modeling work performed in the DLR project Digital-X. Parametric aerodynamic reduced-order models (ROMs) are used to predict surface pressure distributions based on high-fidelity computational fluid dynamics (CFD), but at lower evaluation time and storage than the original CFD model. ROMs for steady aerodynamic applications are built using proper orthogonal decomposition and Isomap, a manifold learning method. Approximate solutions in the so-obtained low-dimensional representations of the data are found with interpolation techniques, or by minimizing the corresponding steady flow-solver residual. The latter approach produces physics-based ROMs driven by the governing equations. The steady ROMs are used to predict the static aeroelastic loads in a multidisciplinary design and optimization context, where the structural model is to be sized for the (aerodynamic) loads. They are also used in a process where an a priori identification of the critical load cases is of interest and the sheer number of load cases to be considered does not lend itself to high-fidelity CFD. An approach to correct a linear loads analysis model using steady CFD solutions at various Mach numbers and angles of attack and a ROM of the corrected aerodynamic influence coefficients is also shown. This results in a complete loads analysis model preserving aerodynamic nonlinearities while allowing fast evaluation across all model parameters. The different ROM methods are applied to a 3D test case of a transonic wing-body transport aircraft configuration. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png CEAS Aeronautical Journal Springer Journals

Reduced-order models for aerodynamic applications, loads and MDO

Loading next page...
 
/lp/springer_journal/reduced-order-models-for-aerodynamic-applications-loads-and-mdo-J9MeOTyUqr
Publisher
Springer Journals
Copyright
Copyright © 2018 by Deutsches Zentrum für Luft- und Raumfahrt e.V.
Subject
Engineering; Aerospace Technology and Astronautics
ISSN
1869-5582
eISSN
1869-5590
D.O.I.
10.1007/s13272-018-0283-6
Publisher site
See Article on Publisher Site

Abstract

This article gives an overview of reduced-order modeling work performed in the DLR project Digital-X. Parametric aerodynamic reduced-order models (ROMs) are used to predict surface pressure distributions based on high-fidelity computational fluid dynamics (CFD), but at lower evaluation time and storage than the original CFD model. ROMs for steady aerodynamic applications are built using proper orthogonal decomposition and Isomap, a manifold learning method. Approximate solutions in the so-obtained low-dimensional representations of the data are found with interpolation techniques, or by minimizing the corresponding steady flow-solver residual. The latter approach produces physics-based ROMs driven by the governing equations. The steady ROMs are used to predict the static aeroelastic loads in a multidisciplinary design and optimization context, where the structural model is to be sized for the (aerodynamic) loads. They are also used in a process where an a priori identification of the critical load cases is of interest and the sheer number of load cases to be considered does not lend itself to high-fidelity CFD. An approach to correct a linear loads analysis model using steady CFD solutions at various Mach numbers and angles of attack and a ROM of the corrected aerodynamic influence coefficients is also shown. This results in a complete loads analysis model preserving aerodynamic nonlinearities while allowing fast evaluation across all model parameters. The different ROM methods are applied to a 3D test case of a transonic wing-body transport aircraft configuration.

Journal

CEAS Aeronautical JournalSpringer Journals

Published: Feb 10, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off