Reduced graphene oxide/ZnFe2O4 nanocomposite as an efficient catalyst for the photocatalytic degradation of methylene blue dye

Reduced graphene oxide/ZnFe2O4 nanocomposite as an efficient catalyst for the photocatalytic... This research effort reports the design and development of reduced graphene oxide/zinc ferrite (rGO/ZnFe2O4) nanocomposites for the photo-oxidative degradation of methylene blue (MB) dye. The composite formation of rGO sheets with ZnFe2O4 nanostructures was achieved by a simple process of one- step solvothermal strategy, in which the simultaneous reduction of GO and Zn2+ and Fe3+ ions was achieved. The morphological studies revealed that the surfaces of rGO sheets were densely covered by the 280-nm-sized spherical ZnFe2O4 nanostructures and the average size of nanoparticles that constitutes the sphere was found to be 10 nm. The cubic spinel structure of prepared ZnFe2O4 nanomaterials was confirmed from the diffraction patterns and the nucleation sites exploited for the composite formation of ZnFe2O4 nanostructures with rGO sheets was explored by using FT-IR spectroscopy. The catalytic efficiency of prepared nanostructures toward MB dye degradation in the presence of H2O2 was evaluated in detail, in which rGO/ZnFe2O4 composite exhibited the remarkable catalytic activity toward MB degradation. The complete MB degradation observed at rGO/ZnFe2O4 composite is attributed to the π–π interaction, hydrogen bonding and electrostatic interaction exerted between the rGO/ZnFe2O4 and MB dye and the involved degradation reaction followed a pseudo-first-order kinetics. Thus, the proposed effort has not only provided a simple approach to synthesize the ZnFe2O4-based composites but has also provided a feasible solution for the effective and economically viable approach for the complete degradation of hazardous organic dye. Research on Chemical Intermediates Springer Journals

Reduced graphene oxide/ZnFe2O4 nanocomposite as an efficient catalyst for the photocatalytic degradation of methylene blue dye

Loading next page...
Springer Netherlands
Copyright © 2016 by Springer Science+Business Media Dordrecht
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial