Reduced graphene oxide (rGO): supported NiO, Co3O4 and NiCo2O4 hybrid composite on carbon cloth (CC)—bi-functional electrode/catalyst for energy storage and conversion devices

Reduced graphene oxide (rGO): supported NiO, Co3O4 and NiCo2O4 hybrid composite on carbon cloth... In the present work, we have synthesized a series of composites with NiO, Co3O4, and NiCo2O4 and reduced graphene oxide (RGO). The hybrid composites were fabricated trough a single step hydrothermal approach with subsequent heat treatment. X-ray diffraction, Raman spectroscopy and Transmission Electron Microscopy analyses indicate the metal oxide nanoparticles were integrated well in the carbon cloth substrate with rGO support. The as-prepared materials were evaluated as the electrodes for energy storage and conversion devices. As the electrode for supercapatteries, rGO supported NiCo2O4 exhibits highest specific capacity of 333 C g−1 at a specific current of 1 mA cm−1 when compared to their monometallic oxides and also exhibits excellent cycling stability with 89% retention at 5 mA cm−1 after 5000 cycles in a three-electrode system. Furthermore, we have investigated the electro-oxidation of methanol with these electrode in an alkaline medium. Compared to individual oxide composites, the NiCo2O4–rGO electrode shows excellent electro-catalytic activity towards methanol oxidation with low onset potential of ~ 0.3 V and high catalytic current density. The observed bi-functionality of rGO supported metal oxide composite could be attributed to the enhanced electrical conductivity and the well-integrated contact with carbon cloth back bone. Thereby it can be concluded that the design of hybrid composite electrode could be the better choice of electro-active materials for both energy storage and conversion applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Reduced graphene oxide (rGO): supported NiO, Co3O4 and NiCo2O4 hybrid composite on carbon cloth (CC)—bi-functional electrode/catalyst for energy storage and conversion devices

Loading next page...
 
/lp/springer_journal/reduced-graphene-oxide-rgo-supported-nio-co3o4-and-nico2o4-hybrid-aDn8pfYIb4
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-017-8444-7
Publisher site
See Article on Publisher Site

Abstract

In the present work, we have synthesized a series of composites with NiO, Co3O4, and NiCo2O4 and reduced graphene oxide (RGO). The hybrid composites were fabricated trough a single step hydrothermal approach with subsequent heat treatment. X-ray diffraction, Raman spectroscopy and Transmission Electron Microscopy analyses indicate the metal oxide nanoparticles were integrated well in the carbon cloth substrate with rGO support. The as-prepared materials were evaluated as the electrodes for energy storage and conversion devices. As the electrode for supercapatteries, rGO supported NiCo2O4 exhibits highest specific capacity of 333 C g−1 at a specific current of 1 mA cm−1 when compared to their monometallic oxides and also exhibits excellent cycling stability with 89% retention at 5 mA cm−1 after 5000 cycles in a three-electrode system. Furthermore, we have investigated the electro-oxidation of methanol with these electrode in an alkaline medium. Compared to individual oxide composites, the NiCo2O4–rGO electrode shows excellent electro-catalytic activity towards methanol oxidation with low onset potential of ~ 0.3 V and high catalytic current density. The observed bi-functionality of rGO supported metal oxide composite could be attributed to the enhanced electrical conductivity and the well-integrated contact with carbon cloth back bone. Thereby it can be concluded that the design of hybrid composite electrode could be the better choice of electro-active materials for both energy storage and conversion applications.

Journal

Journal of Materials Science: Materials in ElectronicsSpringer Journals

Published: Dec 26, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off