Redox reactions in apoplast of growing cells

Redox reactions in apoplast of growing cells Redox reactions affecting the cell wall extensibility proceed in the apoplast of growing cells. The reactions involve dozens of oxidoreductases localized in cell walls (Class I and III heme peroxidases, FAD- and Cu-dependent amine oxidases, oxalate oxidase, ascorbate oxidase, superoxide dismutase, etc.) together with NADPH oxidase and quinone reductase of the plasma membrane. The cell wall extensibility decreases due to peroxidase-catalyzed phenolic cross-links of polymers. Cell growth is proven to be directly dependent on production of reactive oxygen species (ROS) in the apoplast. A special value is attached to hydroxyl radical OH•, which is able to locally cleave polysaccharides and, thus, increase wall extensibility. Generation of OH• results from one-electron reduction of H2O2 and, consequently, is related to the complex of enzymatic and spontaneous reactions of H2O2 turnover in the apoplast. The extensibility also depends on an ascorbate concentration in the apoplast and on a ratio of its oxidized to reduced forms. This dependence is expressed not only in the well-known down-regulation of phenols oxidation but also through pro-oxidant and signal activities. There is only indirect evidence of a role of apoplast-originated redox signaling in the cell growth regulation. In addition to ascorbate, the signaling may supposedly involve ROS, glutathione recycling reactions, numerous redox-sensitive peptides, and proteins localized in the cell wall and the plasma membrane. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Redox reactions in apoplast of growing cells

Loading next page...
 
/lp/springer_journal/redox-reactions-in-apoplast-of-growing-cells-H4ZFd8tHHR
Publisher
Springer Journals
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443717010149
Publisher site
See Article on Publisher Site

Abstract

Redox reactions affecting the cell wall extensibility proceed in the apoplast of growing cells. The reactions involve dozens of oxidoreductases localized in cell walls (Class I and III heme peroxidases, FAD- and Cu-dependent amine oxidases, oxalate oxidase, ascorbate oxidase, superoxide dismutase, etc.) together with NADPH oxidase and quinone reductase of the plasma membrane. The cell wall extensibility decreases due to peroxidase-catalyzed phenolic cross-links of polymers. Cell growth is proven to be directly dependent on production of reactive oxygen species (ROS) in the apoplast. A special value is attached to hydroxyl radical OH•, which is able to locally cleave polysaccharides and, thus, increase wall extensibility. Generation of OH• results from one-electron reduction of H2O2 and, consequently, is related to the complex of enzymatic and spontaneous reactions of H2O2 turnover in the apoplast. The extensibility also depends on an ascorbate concentration in the apoplast and on a ratio of its oxidized to reduced forms. This dependence is expressed not only in the well-known down-regulation of phenols oxidation but also through pro-oxidant and signal activities. There is only indirect evidence of a role of apoplast-originated redox signaling in the cell growth regulation. In addition to ascorbate, the signaling may supposedly involve ROS, glutathione recycling reactions, numerous redox-sensitive peptides, and proteins localized in the cell wall and the plasma membrane.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Feb 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off