Redesigned Spatial Modulation for Spatially Correlated Fading Channels

Redesigned Spatial Modulation for Spatially Correlated Fading Channels In this paper, a new variant of Spatial Modulation (SM) Multiple-Input Multiple-Output (MIMO) transmission technique, designated as Redesigned Spatial Modulation (ReSM) has been proposed. In ReSM scheme, a dynamic mapping for antenna selection is adopted. This scheme employs both single antenna as well as double antenna combinations depending upon channel conditions to combat the effect of spatial correlation. When evaluated over spatially correlated channel conditions, for a fixed spectral efficiency and number of transmit antennas, ReSM exhibits performance improvement of at least 3 dB over all the conventional SM schemes including Trellis Coded Spatial Modulation (TCSM) scheme. Furthermore, a closed form expression for the upper bound on Pairwise Error Probability (PEP) for ReSM has been derived. This has been used to calculate the upper bound for the Average Bit Error Probability (ABEP) for spatially correlated channels. The results of Monte Carlo simulations are in good agreement with the predictions made by analytical results. The relative gains of all the comparison plots in the paper are specified at an ABER of 10−4. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

Redesigned Spatial Modulation for Spatially Correlated Fading Channels

Loading next page...
 
/lp/springer_journal/redesigned-spatial-modulation-for-spatially-correlated-fading-channels-20nErJXGf0
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4762-6
Publisher site
See Article on Publisher Site

Abstract

In this paper, a new variant of Spatial Modulation (SM) Multiple-Input Multiple-Output (MIMO) transmission technique, designated as Redesigned Spatial Modulation (ReSM) has been proposed. In ReSM scheme, a dynamic mapping for antenna selection is adopted. This scheme employs both single antenna as well as double antenna combinations depending upon channel conditions to combat the effect of spatial correlation. When evaluated over spatially correlated channel conditions, for a fixed spectral efficiency and number of transmit antennas, ReSM exhibits performance improvement of at least 3 dB over all the conventional SM schemes including Trellis Coded Spatial Modulation (TCSM) scheme. Furthermore, a closed form expression for the upper bound on Pairwise Error Probability (PEP) for ReSM has been derived. This has been used to calculate the upper bound for the Average Bit Error Probability (ABEP) for spatially correlated channels. The results of Monte Carlo simulations are in good agreement with the predictions made by analytical results. The relative gains of all the comparison plots in the paper are specified at an ABER of 10−4.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Aug 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off