Red Blood Cells of a Transgenic Mouse Expressing High Levels of Human Hemoglobin S Exhibit Deoxy-stimulated Cation Flux

Red Blood Cells of a Transgenic Mouse Expressing High Levels of Human Hemoglobin S Exhibit... and Na+ transport in RBCs from control mice (C57Bl/6J) and a transgenic (αHβS[βMDD]) mouse line that expresses high levels of human αH and βS-chains and has a small percent dense cells but does not exhibit anemia. In transgenic mouse RBCs (n= 5) under oxygenated conditions, K+ efflux was 0.22 ± 0.01 mmol/L cell × min and Na+ influx was 0.17 ± 0.02 mmol/L cell × min. Both fluxes were stimulated by 10 min deoxygenation in transgenic but not in control mice. The deoxy-stimulated K+ efflux from transgenic mouse RBCs was about 55% inhibited by 5 nm charybdotoxin (CTX), a blocker of the calcium activated K+-channel. To compare the fluxes between human and mouse RBCs, we measured the area of mouse RBCs and normalized values to area per liter of cells. The deoxy-simulated CTX-sensitive K+ efflux was larger than the CTX-sensitive K+ efflux observed in RBCs from SS patients. These results suggest that in transgenic mice, deoxygenation increases cytosolic Ca2+ to levels which open Ca2+-activated K+ channels. The presence of these channels was confirmed in both control and transgenic mice by clamping intracellular Ca2+ at 10 μm with the ionophore A23187 and measuring Ca2+-activated K+ efflux. Both types of mouse had similar maximal rates of CTX-sensitive, Ca2+-activated K+ efflux that were similar to those in human SS cells. The capacity of the mouse red cell membrane to regulate cytosolic Ca2+ levels was examined by measurements of the maximal rate of calmodulin activated Ca2+-ATPase activity. This activity was 3-fold greater than that observed in human RBCs thus indicating that mouse RBC membranes have more capacity to regulate cytosolic Ca2+ levels. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Red Blood Cells of a Transgenic Mouse Expressing High Levels of Human Hemoglobin S Exhibit Deoxy-stimulated Cation Flux

Loading next page...
 
/lp/springer_journal/red-blood-cells-of-a-transgenic-mouse-expressing-high-levels-of-human-pUdKN0qmyg
Publisher
Springer Journals
Copyright
Copyright © Inc. by 1997 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900282
Publisher site
See Article on Publisher Site

Abstract

and Na+ transport in RBCs from control mice (C57Bl/6J) and a transgenic (αHβS[βMDD]) mouse line that expresses high levels of human αH and βS-chains and has a small percent dense cells but does not exhibit anemia. In transgenic mouse RBCs (n= 5) under oxygenated conditions, K+ efflux was 0.22 ± 0.01 mmol/L cell × min and Na+ influx was 0.17 ± 0.02 mmol/L cell × min. Both fluxes were stimulated by 10 min deoxygenation in transgenic but not in control mice. The deoxy-stimulated K+ efflux from transgenic mouse RBCs was about 55% inhibited by 5 nm charybdotoxin (CTX), a blocker of the calcium activated K+-channel. To compare the fluxes between human and mouse RBCs, we measured the area of mouse RBCs and normalized values to area per liter of cells. The deoxy-simulated CTX-sensitive K+ efflux was larger than the CTX-sensitive K+ efflux observed in RBCs from SS patients. These results suggest that in transgenic mice, deoxygenation increases cytosolic Ca2+ to levels which open Ca2+-activated K+ channels. The presence of these channels was confirmed in both control and transgenic mice by clamping intracellular Ca2+ at 10 μm with the ionophore A23187 and measuring Ca2+-activated K+ efflux. Both types of mouse had similar maximal rates of CTX-sensitive, Ca2+-activated K+ efflux that were similar to those in human SS cells. The capacity of the mouse red cell membrane to regulate cytosolic Ca2+ levels was examined by measurements of the maximal rate of calmodulin activated Ca2+-ATPase activity. This activity was 3-fold greater than that observed in human RBCs thus indicating that mouse RBC membranes have more capacity to regulate cytosolic Ca2+ levels.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Oct 1, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off