Recursive parameter identification of the dynamical models for bilinear state space systems

Recursive parameter identification of the dynamical models for bilinear state space systems This paper investigates the recursive parameter and state estimation algorithms for a special class of nonlinear systems (i.e., bilinear state space systems). A state observer-based stochastic gradient (O-SG) algorithm is presented for the bilinear state space systems by using the gradient search. In order to improve the parameter estimation accuracy and the convergence rate of the O-SG algorithm, a state observer-based multi-innovation stochastic gradient algorithm and a state observer-based recursive least squares identification algorithm are derived by means of the multi-innovation theory. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed algorithms. Nonlinear Dynamics Springer Journals

Recursive parameter identification of the dynamical models for bilinear state space systems

Loading next page...
Springer Netherlands
Copyright © 2017 by Springer Science+Business Media Dordrecht
Engineering; Vibration, Dynamical Systems, Control; Classical Mechanics; Mechanical Engineering; Automotive Engineering
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial