Recursive Aggregation of Estimators by the Mirror Descent Algorithm with Averaging

Recursive Aggregation of Estimators by the Mirror Descent Algorithm with Averaging We consider a recursive algorithm to construct an aggregated estimator from a finite number of base decision rules in the classification problem. The estimator approximately minimizes a convex risk functional under the ℓ1-constraint. It is defined by a stochastic version of the mirror descent algorithm which performs descent of the gradient type in the dual space with an additional averaging. The main result of the paper is an upper bound for the expected accuracy of the proposed estimator. This bound is of the order $$C\sqrt {(\log M)/t}$$ with an explicit and small constant factor C, where M is the dimension of the problem and t stands for the sample size. A similar bound is proved for a more general setting, which covers, in particular, the regression model with squared loss. Problems of Information Transmission Springer Journals

Recursive Aggregation of Estimators by the Mirror Descent Algorithm with Averaging

Loading next page...
Copyright © 2005 by MAIK "Nauka/Interperiodica"
Engineering; Communications Engineering, Networks; Electrical Engineering; Information Storage and Retrieval; Systems Theory, Control
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial