Recruitment of AtWHY1 and AtWHY3 by a distal element upstream of the kinesin gene AtKP1 to mediate transcriptional repression

Recruitment of AtWHY1 and AtWHY3 by a distal element upstream of the kinesin gene AtKP1 to... A 43-bp distal element, the AtKP1-related element (KPRE), was previously shown to repress the promoter activity of the kinesin gene AtKP1 in Arabidopsis thaliana. In order to identify KPRE-binding factor 1 (KBF1), a combination of ion-exchange chromatography, gel-filtration chromatography and DNA-affinity chromatography was used to purify KBF1 from whole cell extracts of Arabidopsis seedlings. Mass spectrometric identification showed that KBF1 contains two members of the whirly family of transcription factors, AtWHY1 and AtWHY3. KBF1 is a single and double-stranded DNA-binding factor. A ChIP assay showed that AtWHY1 and AtWHY3 bind to the upstream region of AtKP1 gene in vivo. Over-expression of AtWHY1 and AtWHY3 led to an obvious decrease of AtKP1 transcripts, based on quantitative real-time PCR analysis. Interestingly, salicylic acid treatment resulted in an increase of AtWHY1 and AtWHY3 transcripts, and a decrease of AtKP1 transcripts. Thus, AtWHY1 and AtWHY3, as two components of KBF1, can be recruited at the KPRE site to mediate the transcriptional repression of AtKP1. Our results prove that AtKP1 is a new downstream target of the whirly family of transcription factors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Recruitment of AtWHY1 and AtWHY3 by a distal element upstream of the kinesin gene AtKP1 to mediate transcriptional repression

Loading next page...
 
/lp/springer_journal/recruitment-of-atwhy1-and-atwhy3-by-a-distal-element-upstream-of-the-JxQk2kavSH
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-009-9533-7
Publisher site
See Article on Publisher Site

Abstract

A 43-bp distal element, the AtKP1-related element (KPRE), was previously shown to repress the promoter activity of the kinesin gene AtKP1 in Arabidopsis thaliana. In order to identify KPRE-binding factor 1 (KBF1), a combination of ion-exchange chromatography, gel-filtration chromatography and DNA-affinity chromatography was used to purify KBF1 from whole cell extracts of Arabidopsis seedlings. Mass spectrometric identification showed that KBF1 contains two members of the whirly family of transcription factors, AtWHY1 and AtWHY3. KBF1 is a single and double-stranded DNA-binding factor. A ChIP assay showed that AtWHY1 and AtWHY3 bind to the upstream region of AtKP1 gene in vivo. Over-expression of AtWHY1 and AtWHY3 led to an obvious decrease of AtKP1 transcripts, based on quantitative real-time PCR analysis. Interestingly, salicylic acid treatment resulted in an increase of AtWHY1 and AtWHY3 transcripts, and a decrease of AtKP1 transcripts. Thus, AtWHY1 and AtWHY3, as two components of KBF1, can be recruited at the KPRE site to mediate the transcriptional repression of AtKP1. Our results prove that AtKP1 is a new downstream target of the whirly family of transcription factors.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 11, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off