Recovering the topology of surfaces from cluster algebras

Recovering the topology of surfaces from cluster algebras We present an effective method for recovering the topology of a bordered oriented surface with marked points from its cluster algebra. The information is extracted from the maximal triangulations of the surface, those that have exchange quivers with maximal number of arrows in the mutation class. The method gives new proofs of the automorphism and isomorphism problems for the surface cluster algebras as well as the uniqueness of the Fomin–Shapiro–Thurston block decompositions of the exchange quivers of the surface cluster algebras. The previous proofs of these results followed a different approach based on Gu’s direct proof of the last result. The method also explains the exceptions to these results due to pathological problems with the maximal triangulations of several surfaces. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mathematische Zeitschrift Springer Journals

Recovering the topology of surfaces from cluster algebras

Loading next page...
 
/lp/springer_journal/recovering-the-topology-of-surfaces-from-cluster-algebras-byNoBriNPK
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Mathematics; Mathematics, general
ISSN
0025-5874
eISSN
1432-1823
D.O.I.
10.1007/s00209-017-1901-4
Publisher site
See Article on Publisher Site

Abstract

We present an effective method for recovering the topology of a bordered oriented surface with marked points from its cluster algebra. The information is extracted from the maximal triangulations of the surface, those that have exchange quivers with maximal number of arrows in the mutation class. The method gives new proofs of the automorphism and isomorphism problems for the surface cluster algebras as well as the uniqueness of the Fomin–Shapiro–Thurston block decompositions of the exchange quivers of the surface cluster algebras. The previous proofs of these results followed a different approach based on Gu’s direct proof of the last result. The method also explains the exceptions to these results due to pathological problems with the maximal triangulations of several surfaces.

Journal

Mathematische ZeitschriftSpringer Journals

Published: May 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off