Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Reconstructed 3D flame structures in noise-controlled swirl-stabilized combustor

Reconstructed 3D flame structures in noise-controlled swirl-stabilized combustor Flame structures of turbulent premixed flames in a noise-controlled, swirl-stabilized combustor are investigated to clarify the mechanism of combustion noise reduction by the secondary fuel injection. Planar laser-induced fluorescence (PLIF) is conducted for several cases with different secondary fuel injection, and 3D flame structure is reconstructed from PLIF results on multiple planes. The secondary fuel injection suppresses the fluctuation of high-temperature gas in the recirculation zone and reduces Reynolds stress and entropy terms in the acoustic sound source. In the flame zone, effects of the injection frequency are discussed by introducing mean progress variable. The flame brush is very wide for the no control case, whereas it becomes thin and is confined to a narrow space for the secondary fuel injection cases. The investigated combustor gives minimum sound level at a relevant fuel injection frequency, which is very low compared with the natural acoustic mode of the combustor. The flame brush becomes very thin, and self-induced oscillations of the flame brush disappear at this relevant frequency. The oscillation of the flame brush represents large-scale fluctuation of the mean heat release rate. The relations between characteristics of flame brush and combustion noise are discussed by introducing instantaneous and dynamical effects of flame front on the entropy term of the sound source. The secondary fuel injection works for the control of the entropy term in the sound source because the thin flame brush represents suppression of the instantaneous and dynamical effects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Reconstructed 3D flame structures in noise-controlled swirl-stabilized combustor

Loading next page...
 
/lp/springer_journal/reconstructed-3d-flame-structures-in-noise-controlled-swirl-stabilized-pQVx51qmQ6

References (35)

Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
DOI
10.1007/s00348-008-0487-3
Publisher site
See Article on Publisher Site

Abstract

Flame structures of turbulent premixed flames in a noise-controlled, swirl-stabilized combustor are investigated to clarify the mechanism of combustion noise reduction by the secondary fuel injection. Planar laser-induced fluorescence (PLIF) is conducted for several cases with different secondary fuel injection, and 3D flame structure is reconstructed from PLIF results on multiple planes. The secondary fuel injection suppresses the fluctuation of high-temperature gas in the recirculation zone and reduces Reynolds stress and entropy terms in the acoustic sound source. In the flame zone, effects of the injection frequency are discussed by introducing mean progress variable. The flame brush is very wide for the no control case, whereas it becomes thin and is confined to a narrow space for the secondary fuel injection cases. The investigated combustor gives minimum sound level at a relevant fuel injection frequency, which is very low compared with the natural acoustic mode of the combustor. The flame brush becomes very thin, and self-induced oscillations of the flame brush disappear at this relevant frequency. The oscillation of the flame brush represents large-scale fluctuation of the mean heat release rate. The relations between characteristics of flame brush and combustion noise are discussed by introducing instantaneous and dynamical effects of flame front on the entropy term of the sound source. The secondary fuel injection works for the control of the entropy term in the sound source because the thin flame brush represents suppression of the instantaneous and dynamical effects.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 15, 2008

There are no references for this article.