Reconnaissance study of an inferred Quaternary maar structure in the western part of the Bohemian Massif near Neualbenreuth, NE-Bavaria (Germany)

Reconnaissance study of an inferred Quaternary maar structure in the western part of the Bohemian... After a comprehensive geophysical prospecting the Quaternary Mýtina Maar, located on a line between the two Quaternary scoria cones Komorní hůrka/Kammerbühl and Železná hůrka/Eisenbühl, could be revealed by a scientific drilling at the German–Czech border in 2007. Further geophysical field investigations led to the discovery of another geological structure about 2.5 km ESE of the small town Neualbenreuth (NE-Bavaria, Germany), inferred to be also a maar structure, being the fourth volcanic feature aligned along the NW–SE trending Tachov fault zone. It is only faintly indicated as a partial circular rim in the digital elevation model. Though not expressed by a clear magnetic anomaly, geoelectric and refraction seismic tomography strongly indicates a bowl-shaped depression filled with low-resistivity and low-velocity material, correlating well with the well-defined negative gravity anomaly of − 2.5 mGal. Below ca. 15 m-thick debris layer, successions of mostly laminated sediments were recovered in a 100 m-long sediment core in 2015. Sections of finely laminated layers, likely varves, rich in organic matter and tree pollen, were recognized in the upper (22–30 m) and lower (70–86 m) part of the core, respectively, interpreted as interglacials, whereas mostly minerogenic laminated deposits, poor in organic matter, and (almost) barren of tree pollen are interpreted as clastic glacial deposits. According to a preliminary age model based on magnetostratigraphy, palynology, radiocarbon dating, and cyclostratigraphy, the recovered sediments span the time window from about 85 ka back to about 270 ka, covering marine isotope stages 5–8. Sedimentation rates are in the range of 10 cm ka−1 in interglacials and up to 100 cm ka−1 in glacial phases. The stratigraphic record resembles the one from Mýtina Maar, with its eruption date being derived from a nearby tephra deposit at 288 ± 17 ka, thus supporting the age model of the inferred Neualbenreuth Maar. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Earth Sciences Springer Journals

Reconnaissance study of an inferred Quaternary maar structure in the western part of the Bohemian Massif near Neualbenreuth, NE-Bavaria (Germany)

Loading next page...
 
/lp/springer_journal/reconnaissance-study-of-an-inferred-quaternary-maar-structure-in-the-OUz0skPG0S
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Earth Sciences; Geology; Geophysics/Geodesy; Sedimentology; Structural Geology; Mineral Resources; Geochemistry
ISSN
1437-3254
eISSN
1437-3262
D.O.I.
10.1007/s00531-017-1543-0
Publisher site
See Article on Publisher Site

Abstract

After a comprehensive geophysical prospecting the Quaternary Mýtina Maar, located on a line between the two Quaternary scoria cones Komorní hůrka/Kammerbühl and Železná hůrka/Eisenbühl, could be revealed by a scientific drilling at the German–Czech border in 2007. Further geophysical field investigations led to the discovery of another geological structure about 2.5 km ESE of the small town Neualbenreuth (NE-Bavaria, Germany), inferred to be also a maar structure, being the fourth volcanic feature aligned along the NW–SE trending Tachov fault zone. It is only faintly indicated as a partial circular rim in the digital elevation model. Though not expressed by a clear magnetic anomaly, geoelectric and refraction seismic tomography strongly indicates a bowl-shaped depression filled with low-resistivity and low-velocity material, correlating well with the well-defined negative gravity anomaly of − 2.5 mGal. Below ca. 15 m-thick debris layer, successions of mostly laminated sediments were recovered in a 100 m-long sediment core in 2015. Sections of finely laminated layers, likely varves, rich in organic matter and tree pollen, were recognized in the upper (22–30 m) and lower (70–86 m) part of the core, respectively, interpreted as interglacials, whereas mostly minerogenic laminated deposits, poor in organic matter, and (almost) barren of tree pollen are interpreted as clastic glacial deposits. According to a preliminary age model based on magnetostratigraphy, palynology, radiocarbon dating, and cyclostratigraphy, the recovered sediments span the time window from about 85 ka back to about 270 ka, covering marine isotope stages 5–8. Sedimentation rates are in the range of 10 cm ka−1 in interglacials and up to 100 cm ka−1 in glacial phases. The stratigraphic record resembles the one from Mýtina Maar, with its eruption date being derived from a nearby tephra deposit at 288 ± 17 ka, thus supporting the age model of the inferred Neualbenreuth Maar.

Journal

International Journal of Earth SciencesSpringer Journals

Published: Oct 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off