Reconciling Forecasts of Infant Mortality Rates at National and Sub-National Levels: Grouped Time-Series Methods

Reconciling Forecasts of Infant Mortality Rates at National and Sub-National Levels: Grouped... Mortality rates are often disaggregated by different attributes, such as sex, state, education, religion, or ethnicity. Forecasting mortality rates at the national and sub-national levels plays an important role in making social policies associated with the national and sub-national levels. However, base forecasts at the sub-national levels may not add up to the forecasts at the national level. To address this issue, we consider the problem of reconciling mortality rate forecasts from the viewpoint of grouped time-series forecasting methods (Hyndman et al. in, Comput Stat Data Anal 55(9):2579–2589, 2011). A bottom-up method and an optimal combination method are applied to produce point forecasts of infant mortality rates that are aggregated appropriately across the different levels of a hierarchy. We extend these two methods by considering the reconciliation of interval forecasts through a bootstrap procedure. Using the regional infant mortality rates in Australia, we investigate the one-step-ahead to 20-step-ahead point and interval forecast accuracies among the independent and these two grouped time-series forecasting methods. The proposed methods are shown to be useful for reconciling point and interval forecasts of demographic rates at the national and sub-national levels, and would be beneficial for government policy decisions regarding the allocations of current and future resources at both the national and sub-national levels. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Population Research and Policy Review Springer Journals

Reconciling Forecasts of Infant Mortality Rates at National and Sub-National Levels: Grouped Time-Series Methods

Loading next page...
 
/lp/springer_journal/reconciling-forecasts-of-infant-mortality-rates-at-national-and-sub-xfjZG0qx0K
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Social Sciences; Demography; Sociology, general; Population Economics
ISSN
0167-5923
eISSN
1573-7829
D.O.I.
10.1007/s11113-016-9413-1
Publisher site
See Article on Publisher Site

Abstract

Mortality rates are often disaggregated by different attributes, such as sex, state, education, religion, or ethnicity. Forecasting mortality rates at the national and sub-national levels plays an important role in making social policies associated with the national and sub-national levels. However, base forecasts at the sub-national levels may not add up to the forecasts at the national level. To address this issue, we consider the problem of reconciling mortality rate forecasts from the viewpoint of grouped time-series forecasting methods (Hyndman et al. in, Comput Stat Data Anal 55(9):2579–2589, 2011). A bottom-up method and an optimal combination method are applied to produce point forecasts of infant mortality rates that are aggregated appropriately across the different levels of a hierarchy. We extend these two methods by considering the reconciliation of interval forecasts through a bootstrap procedure. Using the regional infant mortality rates in Australia, we investigate the one-step-ahead to 20-step-ahead point and interval forecast accuracies among the independent and these two grouped time-series forecasting methods. The proposed methods are shown to be useful for reconciling point and interval forecasts of demographic rates at the national and sub-national levels, and would be beneficial for government policy decisions regarding the allocations of current and future resources at both the national and sub-national levels.

Journal

Population Research and Policy ReviewSpringer Journals

Published: Sep 8, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off