Recognition of a wide-range of S-RNases by S locus F-box like 2, a general-inhibitor candidate in the Prunus-specific S-RNase-based self-incompatibility system

Recognition of a wide-range of S-RNases by S locus F-box like 2, a general-inhibitor candidate in... Many species in the Rosaceae, the Solanaceae, and the Plantaginaceae exhibit S-RNase-based gametophytic self-incompatibility (GSI). This system comprises S-ribonucleases (S-RNases) as the pistil S determinant and a single or multiple F-box proteins as the pollen S determinants. In Prunus, pollen specificity is determined by a single S haplotype-specific F-box protein (SFB). The results of several studies suggested that SFB exerts cognate S-RNase cytotoxicity, and a hypothetical general inhibitor (GI) is assumed to detoxify S-RNases in non-specific manner unless it is affected by SFB. Although the identity of the GI is unknown, phylogenetic and evolutionary analyses have indicated that S locus F-box like 1–3 (or S locus F-box with low allelic sequence polymorphism 1–3; SLFL1–3), which are encoded by a region of the Prunus genome linked to the S locus, are good GI candidates. Here, we examined the biochemical characteristics of SLFL1–3 to determine whether they have appropriate GI characteristics. Pull-down assays and quantitative expression analyses indicated that Prunus avium SLFL1–3 mainly formed a canonical SCF complex with PavSSK1 and PavCul1A. Binding assays with PavS1,3,4,6-RNases showed that PavSLFL1, PavSLFL2, and PavSLFL3 bound to PavS3-RNase, all PavS-RNases tested, and none of the PavS-RNases tested, respectively. Together, these results suggested that SLFL2 has the appropriate characteristics to be the GI in sweet cherry pollen, while SLFL1 may redundantly work with SLFL2 to detoxify all S-RNases. We discuss the possible roles of SLFL1–3 as the GI in the Prunus-specific S-RNase-based GSI mechanism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Recognition of a wide-range of S-RNases by S locus F-box like 2, a general-inhibitor candidate in the Prunus-specific S-RNase-based self-incompatibility system

Loading next page...
 
/lp/springer_journal/recognition-of-a-wide-range-of-s-rnases-by-s-locus-f-box-like-2-a-IWH3z2K4kH
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-016-0479-2
Publisher site
See Article on Publisher Site

Abstract

Many species in the Rosaceae, the Solanaceae, and the Plantaginaceae exhibit S-RNase-based gametophytic self-incompatibility (GSI). This system comprises S-ribonucleases (S-RNases) as the pistil S determinant and a single or multiple F-box proteins as the pollen S determinants. In Prunus, pollen specificity is determined by a single S haplotype-specific F-box protein (SFB). The results of several studies suggested that SFB exerts cognate S-RNase cytotoxicity, and a hypothetical general inhibitor (GI) is assumed to detoxify S-RNases in non-specific manner unless it is affected by SFB. Although the identity of the GI is unknown, phylogenetic and evolutionary analyses have indicated that S locus F-box like 1–3 (or S locus F-box with low allelic sequence polymorphism 1–3; SLFL1–3), which are encoded by a region of the Prunus genome linked to the S locus, are good GI candidates. Here, we examined the biochemical characteristics of SLFL1–3 to determine whether they have appropriate GI characteristics. Pull-down assays and quantitative expression analyses indicated that Prunus avium SLFL1–3 mainly formed a canonical SCF complex with PavSSK1 and PavCul1A. Binding assays with PavS1,3,4,6-RNases showed that PavSLFL1, PavSLFL2, and PavSLFL3 bound to PavS3-RNase, all PavS-RNases tested, and none of the PavS-RNases tested, respectively. Together, these results suggested that SLFL2 has the appropriate characteristics to be the GI in sweet cherry pollen, while SLFL1 may redundantly work with SLFL2 to detoxify all S-RNases. We discuss the possible roles of SLFL1–3 as the GI in the Prunus-specific S-RNase-based GSI mechanism.

Journal

Plant Molecular BiologySpringer Journals

Published: Apr 12, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off