Reassessment of Models of Facilitated Transport and Cotransport

Reassessment of Models of Facilitated Transport and Cotransport Most membrane transport models are determinate, requiring the transported ligand(s) to bind initially to a vacant site, which undergoes translation and releases ligand to the alternate side. The carrier reverts to its initial position to complete the net transport cycle. Ligand affinity may change during translation, but this must be compensated by an equivalent energy change(s) within the transport cycle. However, any asymmetric cyclic equilibrium deduced on this basis is thermodynamically fallacious. Determinate cotransport models imply lossless stoichiometric relationships between the complexed cotransported ligands. Independent ligand leakage apart from the mobile cotransport complex must occur outside the canonical cotransport pathway. In contrast, stochastic transport models assume independent ligand diffusion through a variably occluded channel(s) containing binding sites where ligands may undergo bimolecular exchanges. Energy dissipation is intrinsic to all stochastic transport models and occurs within the primary transport pathway. Frictional interactions within a shared path generate flow coupling between ligands. The primary driving forces causing transmembrane ligand flows are their electrochemical potential differences between the external solutions. Demonstrations that ligand exchanges in CLC and neurotransmitter transporters can be multimodal, encompassing both “channel”-like high and “transporter”-like lower conductance states and have independently regulated import and export exchange fluxes are major challenges to determinate models but are explicable by transient widening of a close-encounter region within the channel, leading to decreased coupling and enhanced efflux. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Reassessment of Models of Facilitated Transport and Cotransport

Loading next page...
 
/lp/springer_journal/reassessment-of-models-of-facilitated-transport-and-cotransport-0ZNPVrPDe0
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-010-9228-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial