Reassessment of GLUT7 and GLUT9 as Putative Fructose and Glucose Transporters

Reassessment of GLUT7 and GLUT9 as Putative Fructose and Glucose Transporters Although increased dietary fructose consumption is associated with metabolic impairments, the mechanisms and regulation of intestinal fructose absorption are poorly understood. GLUT5 is considered to be the main intestinal fructose transporter. Other GLUT family members, such as GLUT7 and GLUT9 are also expressed in the intestine and were shown to transport fructose and glucose. A conserved isoleucine-containing motif (NXI) was proposed to be essential for fructose transport capacity of GLUT7 and GLUT9 but also of GLUT2 and GLUT5. In assessing whether human GLUT2, GLUT5, GLUT7, and GLUT9 are indeed fructose transporters, we expressed these proteins in Xenopus laevis oocytes. Stably transfected NIH-3T3 fibroblasts were used as second expression system. In proving the role of the NXI motif, variants p.I322V of GLUT2 and p.I296V of GLUT5 were tested as well. Sugar transport was measured by radiotracer flux assays or by metabolomics analysis of cell extracts by GC–MS. Fructose and glucose uptakes by GLUT7 were not increased in both expression systems. In search for the physiological substrate of GLUT7, cells overexpressing the protein were exposed to various metabolite mixtures, but we failed to identify a substrate. Although urate transport by GLUT9 could be shown, neither fructose nor glucose transport was detectable. Fructose uptake was decreased by the GLUT2 p.I322V variant, but remained unaffected in the p.I296V GLUT5 variant. Thus, our work does not find evidence that GLUT7 or GLUT9 transport fructose or glucose or that the isoleucine residue determines fructose specificity. Rather, the physiological substrate of GLUT7 awaits to be discovered. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Reassessment of GLUT7 and GLUT9 as Putative Fructose and Glucose Transporters

Loading next page...
 
/lp/springer_journal/reassessment-of-glut7-and-glut9-as-putative-fructose-and-glucose-EZSrrUgvJ3
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-016-9945-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial