Reasoning with patterns to effectively answer XML keyword queries

Reasoning with patterns to effectively answer XML keyword queries Keyword search is a popular technique for searching tree-structured data on the Web because it frees the user from knowing a complex query language and the structure of the data sources. However, the imprecision of the keyword queries usually results in a very large number of results of which only a few are relevant to the query. Multiple previous approaches have tried to address this problem. They exploit the structural properties of the tree data in order to filter out irrelevant results. This is not an easy task though, and in the general case, these approaches show low precision and/or recall and low quality of result ranking. In this paper, we argue that exploiting the structural relationships of the query matches locally in the data tree is not sufficient and a global analysis of the keyword matches in the data tree is necessary in order to assign meaningful semantics to keyword queries. We present an original approach for answering keyword queries which extracts structural patterns of the query matches and reasons with them in order to return meaningful results ranked with respect to their relevance to the query. Comparisons between patterns are realized based on different types of homomorphisms between patterns. As the number of patterns is typically much smaller than that of the of query matches, this global reasoning is feasible. We design an efficient stack-based algorithm for evaluating keyword queries on tree-structured data, and we also devise a heuristic extension which further improves its performance. We run comprehensive experiments on different datasets to evaluate the efficiency of the algorithms and the effectiveness of our ranking and filtering semantics. The experimental results show that our approach produces results of higher quality compared to previous ones and our algorithms are fast and scale well with respect to the input and output size. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Reasoning with patterns to effectively answer XML keyword queries

Loading next page...
 
/lp/springer_journal/reasoning-with-patterns-to-effectively-answer-xml-keyword-queries-nqpVqn84xl
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-015-0384-3
Publisher site
See Article on Publisher Site

Abstract

Keyword search is a popular technique for searching tree-structured data on the Web because it frees the user from knowing a complex query language and the structure of the data sources. However, the imprecision of the keyword queries usually results in a very large number of results of which only a few are relevant to the query. Multiple previous approaches have tried to address this problem. They exploit the structural properties of the tree data in order to filter out irrelevant results. This is not an easy task though, and in the general case, these approaches show low precision and/or recall and low quality of result ranking. In this paper, we argue that exploiting the structural relationships of the query matches locally in the data tree is not sufficient and a global analysis of the keyword matches in the data tree is necessary in order to assign meaningful semantics to keyword queries. We present an original approach for answering keyword queries which extracts structural patterns of the query matches and reasons with them in order to return meaningful results ranked with respect to their relevance to the query. Comparisons between patterns are realized based on different types of homomorphisms between patterns. As the number of patterns is typically much smaller than that of the of query matches, this global reasoning is feasible. We design an efficient stack-based algorithm for evaluating keyword queries on tree-structured data, and we also devise a heuristic extension which further improves its performance. We run comprehensive experiments on different datasets to evaluate the efficiency of the algorithms and the effectiveness of our ranking and filtering semantics. The experimental results show that our approach produces results of higher quality compared to previous ones and our algorithms are fast and scale well with respect to the input and output size.

Journal

The VLDB JournalSpringer Journals

Published: Jun 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off