Reasoning with patterns to effectively answer XML keyword queries

Reasoning with patterns to effectively answer XML keyword queries Keyword search is a popular technique for searching tree-structured data on the Web because it frees the user from knowing a complex query language and the structure of the data sources. However, the imprecision of the keyword queries usually results in a very large number of results of which only a few are relevant to the query. Multiple previous approaches have tried to address this problem. They exploit the structural properties of the tree data in order to filter out irrelevant results. This is not an easy task though, and in the general case, these approaches show low precision and/or recall and low quality of result ranking. In this paper, we argue that exploiting the structural relationships of the query matches locally in the data tree is not sufficient and a global analysis of the keyword matches in the data tree is necessary in order to assign meaningful semantics to keyword queries. We present an original approach for answering keyword queries which extracts structural patterns of the query matches and reasons with them in order to return meaningful results ranked with respect to their relevance to the query. Comparisons between patterns are realized based on different types of homomorphisms between patterns. As the number of patterns is typically much smaller than that of the of query matches, this global reasoning is feasible. We design an efficient stack-based algorithm for evaluating keyword queries on tree-structured data, and we also devise a heuristic extension which further improves its performance. We run comprehensive experiments on different datasets to evaluate the efficiency of the algorithms and the effectiveness of our ranking and filtering semantics. The experimental results show that our approach produces results of higher quality compared to previous ones and our algorithms are fast and scale well with respect to the input and output size. The VLDB Journal Springer Journals

Reasoning with patterns to effectively answer XML keyword queries

Loading next page...
Springer Berlin Heidelberg
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial