Realizing the dynamics of a non-Markovian quantum system by Markovian coupled oscillators: a Green’s function-based root locus approach

Realizing the dynamics of a non-Markovian quantum system by Markovian coupled oscillators: a... In this paper, we develop a Green’s function-based root locus approach to realizing a Lorentzian-noise-disturbed non-Markovian quantum system by Markovian coupled oscillators in an extended Hilbert space. By using a Green’s function-based root locus method, we design an ancillary oscillator for Markovian coupled oscillators to be a Lorentzian noise generator. Thus a principal oscillator coupled to the ancillary oscillator via a direct interaction can capture the dynamics of a Lorentzian-noise-disturbed non-Markovian quantum system. By matching the root locus in the frequency domain, conditions for the realization are obtained and a critical transition in the non-Markovian quantum system can also be observed in the Markovian coupled oscillators. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Realizing the dynamics of a non-Markovian quantum system by Markovian coupled oscillators: a Green’s function-based root locus approach

Loading next page...
 
/lp/springer_journal/realizing-the-dynamics-of-a-non-markovian-quantum-system-by-markovian-JwMXEluZ9v
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-1196-5
Publisher site
See Article on Publisher Site

Abstract

In this paper, we develop a Green’s function-based root locus approach to realizing a Lorentzian-noise-disturbed non-Markovian quantum system by Markovian coupled oscillators in an extended Hilbert space. By using a Green’s function-based root locus method, we design an ancillary oscillator for Markovian coupled oscillators to be a Lorentzian noise generator. Thus a principal oscillator coupled to the ancillary oscillator via a direct interaction can capture the dynamics of a Lorentzian-noise-disturbed non-Markovian quantum system. By matching the root locus in the frequency domain, conditions for the realization are obtained and a critical transition in the non-Markovian quantum system can also be observed in the Markovian coupled oscillators.

Journal

Quantum Information ProcessingSpringer Journals

Published: Dec 1, 2015

References

  • Modeling and control of quantum systems: an introduction
    Altafini, C; Ticozzi, F

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off