Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity

Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity We propose a scheme to realize a three-qubit controlled phase gate and a multi-qubit controlled NOT gate of one qubit simultaneously controlling n-target qubits with a four-level quantum system in a cavity. The implementation time for multi-qubit controlled NOT gate is independent of the number of qubit. Three-qubit phase gate is generalized to n-qubit phase gate with multiple control qubits. The number of steps reduces linearly as compared to conventional gate decomposition method. Our scheme can be applied to various types of physical systems such as superconducting qubits coupled to a resonator and trapped atoms in a cavity. Our scheme does not require adjustment of level spacing during the gate implementation. We also show the implementation of Deutsch–Joza algorithm. Finally, we discuss the imperfections due to cavity decay and the possibility of physical implementation of our scheme. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity

Loading next page...
 
/lp/springer_journal/realization-of-quantum-gates-with-multiple-control-qubits-or-multiple-Izdbsj00bb
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-0947-7
Publisher site
See Article on Publisher Site

Abstract

We propose a scheme to realize a three-qubit controlled phase gate and a multi-qubit controlled NOT gate of one qubit simultaneously controlling n-target qubits with a four-level quantum system in a cavity. The implementation time for multi-qubit controlled NOT gate is independent of the number of qubit. Three-qubit phase gate is generalized to n-qubit phase gate with multiple control qubits. The number of steps reduces linearly as compared to conventional gate decomposition method. Our scheme can be applied to various types of physical systems such as superconducting qubits coupled to a resonator and trapped atoms in a cavity. Our scheme does not require adjustment of level spacing during the gate implementation. We also show the implementation of Deutsch–Joza algorithm. Finally, we discuss the imperfections due to cavity decay and the possibility of physical implementation of our scheme.

Journal

Quantum Information ProcessingSpringer Journals

Published: Feb 27, 2015

References

  • Demonstration of two-qubit algorithms with a superconducting quantum processor
    DiCarlo, L; Chow, JM; Gambetta, JM; Bishop, LS; Johnson, BR; Schuster, DI; Majer, J; Blais, A; Frunzio, L; Girvin, SM; Schoelkopf, RJ
  • Implementation of a Toffoli gate with superconducting circuits
    Fedorov, A

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off