Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Real-time moving pedestrian detection using contour features

Real-time moving pedestrian detection using contour features Pedestrian detection is one of the most fundamental research in computer vision. However, many high performance detectors run slowly. In this paper, we propose a real-time moving pedestrian detector by using efficient contour features. Firstly, the moving targets are detected by background subtraction. By combining the elliptic Fourier descriptors and the normalized central moments, we propose the Elliptic Fourier and Moments Descriptors (EFMD) to describe the moving target contours. Secondly, the moving targets are classified by the trained Support Vector Machine (SVM). In addition, we introduce a novel overlap handling algorithm based on linear fitting and normalized central moments, which improves the detection performance by reducing both false positives and miss rate. The experimental results on PETS 2009 and CAVIAR datasets show that our approach achieves a miss rate of 14% (PETS 2009) and 13% (CAVIAR) at 10−1 False Positives Per Image (FPPI) and an average runtime per frame of 30 ms (PETS 2009) and 25 ms (CAVIAR), which significantly outperforms several state-of-the-art detectors in both detection performance and runtime. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Real-time moving pedestrian detection using contour features

Loading next page...
 
/lp/springer_journal/real-time-moving-pedestrian-detection-using-contour-features-izMwYS6jUW
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
DOI
10.1007/s11042-018-6173-4
Publisher site
See Article on Publisher Site

Abstract

Pedestrian detection is one of the most fundamental research in computer vision. However, many high performance detectors run slowly. In this paper, we propose a real-time moving pedestrian detector by using efficient contour features. Firstly, the moving targets are detected by background subtraction. By combining the elliptic Fourier descriptors and the normalized central moments, we propose the Elliptic Fourier and Moments Descriptors (EFMD) to describe the moving target contours. Secondly, the moving targets are classified by the trained Support Vector Machine (SVM). In addition, we introduce a novel overlap handling algorithm based on linear fitting and normalized central moments, which improves the detection performance by reducing both false positives and miss rate. The experimental results on PETS 2009 and CAVIAR datasets show that our approach achieves a miss rate of 14% (PETS 2009) and 13% (CAVIAR) at 10−1 False Positives Per Image (FPPI) and an average runtime per frame of 30 ms (PETS 2009) and 25 ms (CAVIAR), which significantly outperforms several state-of-the-art detectors in both detection performance and runtime.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Jun 2, 2018

References