Real-time continuous intersection joins over large sets of moving objects using graphic processing units

Real-time continuous intersection joins over large sets of moving objects using graphic... The Multiple Time Bucket Join (MTB-join) algorithm is the state of the art for processing the continuous intersection join (CI-join) query over moving objects. It considerably outperforms alternatives, but still falls short of real-time application performance requirements for large sets of moving objects. In this paper, we achieve real-time performance for the CI-join query over large sets of moving objects by exploiting the computational power of commodity graphics processing units (GPUs). We first analyze how the main characteristics of the MTB-join algorithm make it ill suited to GPUs and identify key challenges in designing efficient GPU-based algorithms for the query. We then address these challenges by developing the multi-layered grid join (MLG-join) algorithm which has the following key features: (i) memory locality friendly indexing, (ii) no dynamic memory allocation, (iii) in-place object updates, (iv) lock-free concurrent updates, and (v) massive parallelism. These features unleash the full potential of the memory bandwidth and parallel processing of GPUs. Furthermore, we conduct a theoretical analysis which can predict the pruning power of the MLG-join algorithm given certain parameter values used in the algorithm. This allows us to select optimal parameter values. Through extensive experimental results, we show that our analysis accurately models the MLG-join algorithm’s sensitivity to parameter values. The proposed MLG-join algorithm outperforms the MTB-join algorithm, and a GPU-based nested-loops join algorithm, by up to two orders of magnitude, and achieves real-time performance for CI-join queries on large sets of moving objects. The VLDB Journal Springer Journals

Real-time continuous intersection joins over large sets of moving objects using graphic processing units

Loading next page...
Springer Berlin Heidelberg
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial