Reaction pathways of carboxylic acids over TiO2 single crystal surfaces: diketene formation from bromo-acetic acid

Reaction pathways of carboxylic acids over TiO2 single crystal surfaces: diketene formation from... This work presents the first investigation of a halo-carboxylic acid (Br-CH2COOH) over the surface of an oxide single crystal (the {011}-faceted TiO2(001) single crystal). A very rich chemistry is observed. This is broadly divided into three categories: elimination of HBr to make ketene, dimerisation of two molecules of ketene to 4-methyl-2-oxetanone and 1,3-cyclobutanedione, and further reaction of the latter to a mass spectrometer m/e 70 signal attributed to crotonaldehyde (formed by ring opening). Temperature programmed desorption (TPD) and Scanning Kinetic Spectroscopy (SKS) gave complementary results with SKS opening a simple way for investigating surface chemical reactions in UHV conditions with high surface coverage at still high temperatures. A successful modeling of SKS data was conducted providing the activation energies (E a) for ketene desorption, with a reaction order n close to 1, for both CH3COOH (E a = 21.3 kcal/mol) and BrCH2COOH (E a = 17.2 kcal/mol). In order to further understand the surface reaction of BrCH2COOH semi-empirical PM3 computation of its adsorption and reaction on a Ti8O29H26 cluster representing the (011) TiO2 surface was conducted and compared to that of CH3COOH on the same cluster. Dissociative adsorptions of both the O-H and C-Br bonds are more stable than the non-dissociative adsorption modes. The di-coordinated species, TiOC(O)CH2Os, formed by the simultaneous dissociation of both C-Br and O-H bonds of BrCH2COOH appears the most plausible surface intermediate for the observed carbon coupling reactions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Reaction pathways of carboxylic acids over TiO2 single crystal surfaces: diketene formation from bromo-acetic acid

Loading next page...
 
/lp/springer_journal/reaction-pathways-of-carboxylic-acids-over-tio2-single-crystal-yVFhRbqcsU
Publisher
Springer Journals
Copyright
Copyright © 2003 by VSP 2003
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856703322539618
Publisher site
See Article on Publisher Site

Abstract

This work presents the first investigation of a halo-carboxylic acid (Br-CH2COOH) over the surface of an oxide single crystal (the {011}-faceted TiO2(001) single crystal). A very rich chemistry is observed. This is broadly divided into three categories: elimination of HBr to make ketene, dimerisation of two molecules of ketene to 4-methyl-2-oxetanone and 1,3-cyclobutanedione, and further reaction of the latter to a mass spectrometer m/e 70 signal attributed to crotonaldehyde (formed by ring opening). Temperature programmed desorption (TPD) and Scanning Kinetic Spectroscopy (SKS) gave complementary results with SKS opening a simple way for investigating surface chemical reactions in UHV conditions with high surface coverage at still high temperatures. A successful modeling of SKS data was conducted providing the activation energies (E a) for ketene desorption, with a reaction order n close to 1, for both CH3COOH (E a = 21.3 kcal/mol) and BrCH2COOH (E a = 17.2 kcal/mol). In order to further understand the surface reaction of BrCH2COOH semi-empirical PM3 computation of its adsorption and reaction on a Ti8O29H26 cluster representing the (011) TiO2 surface was conducted and compared to that of CH3COOH on the same cluster. Dissociative adsorptions of both the O-H and C-Br bonds are more stable than the non-dissociative adsorption modes. The di-coordinated species, TiOC(O)CH2Os, formed by the simultaneous dissociation of both C-Br and O-H bonds of BrCH2COOH appears the most plausible surface intermediate for the observed carbon coupling reactions.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 17, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off