Reaction pathways and kinetic parameters of sonolytically induced oxidation of dimethyl methylphosphonate in air saturated aqueous solutions

Reaction pathways and kinetic parameters of sonolytically induced oxidation of dimethyl... The oxidation of dimethyl methylphosphonate (DMMP) was examined under ultrasonic conditions (640 kHz) in oxygen saturated aqueous solutions. Acetic acid, formic acid, methylphosphonic acid, phosphate, and oxalic acid have been identified as the major products produced during the sonolytic irradiation of DMMP. The initial rates of oxidation were determined as a function of initial DMMP concentration. The kinetic behavior of the system is consistent with the Langmuir-Hinshelwood model implying oxidative processes occur at or near the gas-liquid interface during cavitation. Mechanistic implications and conclusions are discussed based on the product distributions and kinetic parameters. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Reaction pathways and kinetic parameters of sonolytically induced oxidation of dimethyl methylphosphonate in air saturated aqueous solutions

Loading next page...
 
/lp/springer_journal/reaction-pathways-and-kinetic-parameters-of-sonolytically-induced-s9mOJCTYLo
Publisher
Springer Netherlands
Copyright
Copyright © 1998 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856798X00591
Publisher site
See Article on Publisher Site

Abstract

The oxidation of dimethyl methylphosphonate (DMMP) was examined under ultrasonic conditions (640 kHz) in oxygen saturated aqueous solutions. Acetic acid, formic acid, methylphosphonic acid, phosphate, and oxalic acid have been identified as the major products produced during the sonolytic irradiation of DMMP. The initial rates of oxidation were determined as a function of initial DMMP concentration. The kinetic behavior of the system is consistent with the Langmuir-Hinshelwood model implying oxidative processes occur at or near the gas-liquid interface during cavitation. Mechanistic implications and conclusions are discussed based on the product distributions and kinetic parameters.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 14, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial