Raw sugarcane bagasse as carbon source for xylanase production by Paenibacillus species: a potential degrader of agricultural wastes

Raw sugarcane bagasse as carbon source for xylanase production by Paenibacillus species: a... Paenibacillus species isolated from a variety of natural sources have shown to be important glycoside hydrolases producers. These enzymes play a key role in bio-refining applications, as they are central biocatalysts for the processing of different types of polymers from vegetal biomass. Xylanase production by three native isolates belonging to the genus Paenibacillus was approached by utilizing mineral-based medium and agricultural by-products as a convenient source to produce biocatalysts suitable for their degradation. While varieties of alkali pretreated sugarcane bagasse were useful substrates for the strains from Paenibacillus genus evaluated, raw sugarcane bagasse was the most effective substrate for endoxylanase production by Paenibacillus sp. AR247. This strain was then selected to further improvement of its enzyme production by means of a two-step statistical approach. It was determined that the carbon source, provided as an inexpensive agro-waste, as well as phosphate and magnesium were the culture media components that most influenced the enzyme production, which was improved three times compared to the screening results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Raw sugarcane bagasse as carbon source for xylanase production by Paenibacillus species: a potential degrader of agricultural wastes

Loading next page...
 
/lp/springer_journal/raw-sugarcane-bagasse-as-carbon-source-for-xylanase-production-by-KYNy6FHwqm
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-9494-3
Publisher site
See Article on Publisher Site

Abstract

Paenibacillus species isolated from a variety of natural sources have shown to be important glycoside hydrolases producers. These enzymes play a key role in bio-refining applications, as they are central biocatalysts for the processing of different types of polymers from vegetal biomass. Xylanase production by three native isolates belonging to the genus Paenibacillus was approached by utilizing mineral-based medium and agricultural by-products as a convenient source to produce biocatalysts suitable for their degradation. While varieties of alkali pretreated sugarcane bagasse were useful substrates for the strains from Paenibacillus genus evaluated, raw sugarcane bagasse was the most effective substrate for endoxylanase production by Paenibacillus sp. AR247. This strain was then selected to further improvement of its enzyme production by means of a two-step statistical approach. It was determined that the carbon source, provided as an inexpensive agro-waste, as well as phosphate and magnesium were the culture media components that most influenced the enzyme production, which was improved three times compared to the screening results.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Jun 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off