Rate control-based framework and algorithm for optimal provisioning

Rate control-based framework and algorithm for optimal provisioning Ideally, networks should be designed to accommodate a variety of different traffic types, while at the same time maximizing its efficiency and utility. Network utility maximization (NUM) serves as an effective approach for solving the problem of network resource allocation (NRA) in network analysis and design. In existing literature, the NUM model has been used to achieve optimal network resource allocation such that the network utility is maximized. This is important, since network resources are at premium with the exponential increase in Internet traffic. However, most research work considering network resource allocation does not take into consideration key issues, such as routing and delay. A good routing policy is the key to efficient network utility, and without considering the delay requirements of the different traffic, the network will fail to meet the user’s quality of service (QoS) constraints. In this paper, we propose a new NUM framework that achieves improved network utility while taking into routing and delay requirements of the traffic. Then, we propose a decomposition technique-based algorithm, D-NUM, for solving this model efficiently. We compare our approach with existing approaches via simulations and show that our approach performs well. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Rate control-based framework and algorithm for optimal provisioning

Loading next page...
 
/lp/springer_journal/rate-control-based-framework-and-algorithm-for-optimal-provisioning-N8zRSNbLSb
Publisher
Springer US
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-011-0318-y
Publisher site
See Article on Publisher Site

Abstract

Ideally, networks should be designed to accommodate a variety of different traffic types, while at the same time maximizing its efficiency and utility. Network utility maximization (NUM) serves as an effective approach for solving the problem of network resource allocation (NRA) in network analysis and design. In existing literature, the NUM model has been used to achieve optimal network resource allocation such that the network utility is maximized. This is important, since network resources are at premium with the exponential increase in Internet traffic. However, most research work considering network resource allocation does not take into consideration key issues, such as routing and delay. A good routing policy is the key to efficient network utility, and without considering the delay requirements of the different traffic, the network will fail to meet the user’s quality of service (QoS) constraints. In this paper, we propose a new NUM framework that achieves improved network utility while taking into routing and delay requirements of the traffic. Then, we propose a decomposition technique-based algorithm, D-NUM, for solving this model efficiently. We compare our approach with existing approaches via simulations and show that our approach performs well.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Jul 1, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off