Rapid transcript accumulation of pathogenesis-related genes during an incompatible interaction in bacterial speck disease-resistant tomato plants

Rapid transcript accumulation of pathogenesis-related genes during an incompatible interaction in... In the yeast two-hybrid system, the Pto kinase interacts with three putative transcription factors Pti4, Pti5 and Pti6. The Pti4/5/6 proteins contain a DNA binding domain that recognizes and binds a DNA sequence (5′-AGCCGCC-3′ the 'PR box') present in the promoter region of a large number of genes encoding 'pathogenesis-related' (PR) proteins. We have now investigated the pathogen-induced expression of PR box-containing genes in tomato. We isolated a tomato osmotin gene that contains two PR boxes in its promoter region and demonstrated that the abundance of the osmotin transcript rapidly increases during an incompatible interaction involving Pto-containing tomato plants and the bacterial pathogen Pseudomonas syringae pv. tomato expressing the avrPto gene. In addition, we found that transcripts of two other tomato PR genes (encoding endochitinase and β-1,3-glucanase B) and at least one ACC oxidase gene, all of which contain PR boxes in their promoter regions, rapidly accumulate in the incompatible interaction. These data support the hypothesis that the tomato Pto kinase regulates the expression of certain defense genes in tomato by interaction with transcription factors that bind the PR box. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Rapid transcript accumulation of pathogenesis-related genes during an incompatible interaction in bacterial speck disease-resistant tomato plants

Loading next page...
 
/lp/springer_journal/rapid-transcript-accumulation-of-pathogenesis-related-genes-during-an-aXGnGVLHRf
Publisher
Springer Journals
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006213324555
Publisher site
See Article on Publisher Site

Abstract

In the yeast two-hybrid system, the Pto kinase interacts with three putative transcription factors Pti4, Pti5 and Pti6. The Pti4/5/6 proteins contain a DNA binding domain that recognizes and binds a DNA sequence (5′-AGCCGCC-3′ the 'PR box') present in the promoter region of a large number of genes encoding 'pathogenesis-related' (PR) proteins. We have now investigated the pathogen-induced expression of PR box-containing genes in tomato. We isolated a tomato osmotin gene that contains two PR boxes in its promoter region and demonstrated that the abundance of the osmotin transcript rapidly increases during an incompatible interaction involving Pto-containing tomato plants and the bacterial pathogen Pseudomonas syringae pv. tomato expressing the avrPto gene. In addition, we found that transcripts of two other tomato PR genes (encoding endochitinase and β-1,3-glucanase B) and at least one ACC oxidase gene, all of which contain PR boxes in their promoter regions, rapidly accumulate in the incompatible interaction. These data support the hypothesis that the tomato Pto kinase regulates the expression of certain defense genes in tomato by interaction with transcription factors that bind the PR box.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off