Rapid one-step protein purification from plant material using the eight-amino acid StrepII epitope

Rapid one-step protein purification from plant material using the eight-amino acid StrepII epitope Beyond the rewards of plant genome analysis and gene identification, characterisation of protein activities, post-translational modifications and protein complex composition remains a challenge for plant biologists. Ideally, methods should allow rapid isolation of proteins from plant material achieving a high degree of purity. We tested three purification strategies based on the eight-amino acid StrepII, six-amino acid His6 and 181-amino acid Tandem Affinity Purification (TAP) affinity tags for enrichment of a membrane-anchored protein kinase, NtCDPK2, and a soluble protein, AtSGT1b, from leaf extracts. Transiently expressed StrepII-taggedNtCDPK2 was purified from Nicotiana benthamiana to almost complete homogeneity in less than 60 min and was directly suitable for enzymatic or mass-spectrometric analyses, allowing the identification of in planta phosphorylation sites. In contrast, purification of NtCDPK2 via His6 tag yielded partially oxidised protein of low purity. AtSGT1b could be isolated after transient expression from N. benthamiana or from transgenic Arabidopsis thaliana as either TAP-tagged or StrepII-tagged protein. While StrepII-tag purification achieved similar yield and high purity as the TAP-tag strategy, it was considerably easier and faster. Using either tagging strategy, a protein was co-purified with AtSGT1b from N. benthaniana and A. thalianaleaf extracts, suggesting that both the StrepII and TAP tags are suitable for purification of protein complexes from plant material. We propose that the StrepII epitope, in particular, may serve as a generally utilizable tag to further our understanding of protein functions, post-translational modifications and interaction dynamics in plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Rapid one-step protein purification from plant material using the eight-amino acid StrepII epitope

Loading next page...
 
/lp/springer_journal/rapid-one-step-protein-purification-from-plant-material-using-the-FW7eRFNeJt
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-004-0501-y
Publisher site
See Article on Publisher Site

Abstract

Beyond the rewards of plant genome analysis and gene identification, characterisation of protein activities, post-translational modifications and protein complex composition remains a challenge for plant biologists. Ideally, methods should allow rapid isolation of proteins from plant material achieving a high degree of purity. We tested three purification strategies based on the eight-amino acid StrepII, six-amino acid His6 and 181-amino acid Tandem Affinity Purification (TAP) affinity tags for enrichment of a membrane-anchored protein kinase, NtCDPK2, and a soluble protein, AtSGT1b, from leaf extracts. Transiently expressed StrepII-taggedNtCDPK2 was purified from Nicotiana benthamiana to almost complete homogeneity in less than 60 min and was directly suitable for enzymatic or mass-spectrometric analyses, allowing the identification of in planta phosphorylation sites. In contrast, purification of NtCDPK2 via His6 tag yielded partially oxidised protein of low purity. AtSGT1b could be isolated after transient expression from N. benthamiana or from transgenic Arabidopsis thaliana as either TAP-tagged or StrepII-tagged protein. While StrepII-tag purification achieved similar yield and high purity as the TAP-tag strategy, it was considerably easier and faster. Using either tagging strategy, a protein was co-purified with AtSGT1b from N. benthaniana and A. thalianaleaf extracts, suggesting that both the StrepII and TAP tags are suitable for purification of protein complexes from plant material. We propose that the StrepII epitope, in particular, may serve as a generally utilizable tag to further our understanding of protein functions, post-translational modifications and interaction dynamics in plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off