Rapid isolation of culturable microalgae from a tropical shallow lake system

Rapid isolation of culturable microalgae from a tropical shallow lake system Microalgae diversity is constantly being studied and explored for biotechnological uses. The shallow lake system of Lençois Maranhenses (SLLM) is a unique coastal ecosystem in northeast Brazil found interspersed in a field of sand dunes. Organisms in these tropical lakes are constantly exposed to high temperatures and solar irradiance. Yet, little is known about the diversity of culturable microalgae in this aquatic ecosystem. This study reports the use of flow cytometry with fluorescence-activated cell sorting (FACS) to isolate single microalgae cells/coenobia from five lakes in SLLM, accessing the efficiency of this isolation technique with two types of culture media. To retrieve the highest diversity of culturable microalgae, planktonic, benthic, and epiphytic samples were collected and processed by FACS. The diversity of microalgae in natural lake communities was described by morphology-based taxonomy. Isolates of the most abundant phylum established in cultures (Chlorophyta) were characterized by gene sequencing (18S rDNA). A total of 3072 microalgal cells/coenobia were sorted into 96-well plates. From these, 945 wells presented algal growth (31% success rate). Based on morphological diversity and adaptability to culture conditions, a set of 171 strains were selected to be incorporated in a culture collection. Microalgae present in the lakes belonged to six phyla, with four of them represented in the cultured strains. Our sampling strategy coupled with FACS isolation retrieved a fairly large number and diversity of microalgal strains with minimum isolation effort from a unique coastal environment. The monoclonal cultures established in this study offer new opportunities for basic and applied research on microalgae biotechnology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Phycology Springer Journals

Loading next page...
 
/lp/springer_journal/rapid-isolation-of-culturable-microalgae-from-a-tropical-shallow-lake-2IXUMJsFlh
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Life Sciences; Plant Sciences; Freshwater & Marine Ecology; Plant Physiology; Ecology
ISSN
0921-8971
eISSN
1573-5176
D.O.I.
10.1007/s10811-018-1404-7
Publisher site
See Article on Publisher Site

Abstract

Microalgae diversity is constantly being studied and explored for biotechnological uses. The shallow lake system of Lençois Maranhenses (SLLM) is a unique coastal ecosystem in northeast Brazil found interspersed in a field of sand dunes. Organisms in these tropical lakes are constantly exposed to high temperatures and solar irradiance. Yet, little is known about the diversity of culturable microalgae in this aquatic ecosystem. This study reports the use of flow cytometry with fluorescence-activated cell sorting (FACS) to isolate single microalgae cells/coenobia from five lakes in SLLM, accessing the efficiency of this isolation technique with two types of culture media. To retrieve the highest diversity of culturable microalgae, planktonic, benthic, and epiphytic samples were collected and processed by FACS. The diversity of microalgae in natural lake communities was described by morphology-based taxonomy. Isolates of the most abundant phylum established in cultures (Chlorophyta) were characterized by gene sequencing (18S rDNA). A total of 3072 microalgal cells/coenobia were sorted into 96-well plates. From these, 945 wells presented algal growth (31% success rate). Based on morphological diversity and adaptability to culture conditions, a set of 171 strains were selected to be incorporated in a culture collection. Microalgae present in the lakes belonged to six phyla, with four of them represented in the cultured strains. Our sampling strategy coupled with FACS isolation retrieved a fairly large number and diversity of microalgal strains with minimum isolation effort from a unique coastal environment. The monoclonal cultures established in this study offer new opportunities for basic and applied research on microalgae biotechnology.

Journal

Journal of Applied PhycologySpringer Journals

Published: Feb 7, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off