Rapid evolution of promoters for the plastome gene ndhF in flowering plants

Rapid evolution of promoters for the plastome gene ndhF in flowering plants Plastome is thought to be a very conservative part of plant genome but little is known about the evolution of plastome promoters. It was previously shown that one light-regulated promoter (LRPpsbD) is highly conserved in different flowering plant species and in black pine. We have undertaken search and demonstrated that gene ndhF is located in a plastome region that rarely underwent substantial rearrangements in terrestrial plants. However, alignment of sequences upstream ndhF suggests that promoters of this gene underwent comparatively rapid evolution in flowering plants. Probably, the ancestor of two basal Magnoliophyta branches (magnoliids and eudicotyledons) had the promoter PA-ndhF, which was substituted with other promoters—PB-ndhF and PC-ndhF—in some phylogenetic lineages of dicots. We failed to reveal conservative sequences with potential promoters of −10/−35 type upstream ndhF genes of monocotyledonous plants, including nine representatives of the grass family (Poaceae). Multiple alignments of sequences from related taxa showed that the predicted ndhF promoters (A–C) underwent frequent mutations and these mutations are not only nucleotide substitutions but also small insertions and deletions. Thus, we can assume that at least some plastome promoters evolve rapidly. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Rapid evolution of promoters for the plastome gene ndhF in flowering plants

Loading next page...
 
/lp/springer_journal/rapid-evolution-of-promoters-for-the-plastome-gene-ndhf-in-flowering-qG0wJCrPEy
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443709060144
Publisher site
See Article on Publisher Site

Abstract

Plastome is thought to be a very conservative part of plant genome but little is known about the evolution of plastome promoters. It was previously shown that one light-regulated promoter (LRPpsbD) is highly conserved in different flowering plant species and in black pine. We have undertaken search and demonstrated that gene ndhF is located in a plastome region that rarely underwent substantial rearrangements in terrestrial plants. However, alignment of sequences upstream ndhF suggests that promoters of this gene underwent comparatively rapid evolution in flowering plants. Probably, the ancestor of two basal Magnoliophyta branches (magnoliids and eudicotyledons) had the promoter PA-ndhF, which was substituted with other promoters—PB-ndhF and PC-ndhF—in some phylogenetic lineages of dicots. We failed to reveal conservative sequences with potential promoters of −10/−35 type upstream ndhF genes of monocotyledonous plants, including nine representatives of the grass family (Poaceae). Multiple alignments of sequences from related taxa showed that the predicted ndhF promoters (A–C) underwent frequent mutations and these mutations are not only nucleotide substitutions but also small insertions and deletions. Thus, we can assume that at least some plastome promoters evolve rapidly.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Nov 6, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off