Rapid and effective isolation of candidate sequences for development of microsatellite markers in 30 fish species by using kit-based target capture and multiplexed parallel sequencing

Rapid and effective isolation of candidate sequences for development of microsatellite markers in... Recent advances in next-generation sequencing (NGS) technology have accelerated the development of microsatellite markers for wildlife conservation genetics. Although the discovery of microsatellite-containing sequences based on NGS is more efficient with sequencing of a microsatellite-enriched library than with whole-genome shotgun sequencing, the process of constructing a microsatellite-enriched library is somewhat complicated. Therefore, many researchers prefer to use external services for the microsatellite-enrichment, which requires more time. To facilitate the rapid and effective development of novel microsatellite markers, we attempted to simplify the process of constructing a microsatellite-enriched library for multiplexed parallel sequencing. To capture microsatellite-containing sequences, we applied an easy-to-use commercially available kit for the hybridization and wash steps. After preparing shotgun libraries of 30 fish species for NGS, we captured microsatellite-containing DNA fragments directly from the shotgun libraries by using the commercially available kit. Next, three runs of multiplexed parallel sequencing were conducted on the 454 GS Junior platform. The resulting sequences for each species included high proportions of microsatellite-containing sequences (from 46 to 79%). Thus, sufficient numbers of primer sets, ranging from 1029 to 6606, were effectively designed for each species. Microsatellite capture and sequencing were completed in about a week, so the time required was substantially reduced. To validate the effectiveness of our strategy, we screened 44 potential primer sets designed for ayu (Plecoglossus altivelis). The results of polymorphisms revealed that allelic variability at 23 markers will be useful for studying population structure. These results prove the effectiveness of our improved approach for microsatellite marker development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Conservation Genetics Resources Springer Journals

Rapid and effective isolation of candidate sequences for development of microsatellite markers in 30 fish species by using kit-based target capture and multiplexed parallel sequencing

Loading next page...
 
/lp/springer_journal/rapid-and-effective-isolation-of-candidate-sequences-for-development-0QcOcpJ0rc
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Conservation Biology/Ecology; Ecology; Biodiversity; Evolutionary Biology; Plant Genetics and Genomics; Animal Genetics and Genomics
eISSN
1877-7260
D.O.I.
10.1007/s12686-017-0699-z
Publisher site
See Article on Publisher Site

Abstract

Recent advances in next-generation sequencing (NGS) technology have accelerated the development of microsatellite markers for wildlife conservation genetics. Although the discovery of microsatellite-containing sequences based on NGS is more efficient with sequencing of a microsatellite-enriched library than with whole-genome shotgun sequencing, the process of constructing a microsatellite-enriched library is somewhat complicated. Therefore, many researchers prefer to use external services for the microsatellite-enrichment, which requires more time. To facilitate the rapid and effective development of novel microsatellite markers, we attempted to simplify the process of constructing a microsatellite-enriched library for multiplexed parallel sequencing. To capture microsatellite-containing sequences, we applied an easy-to-use commercially available kit for the hybridization and wash steps. After preparing shotgun libraries of 30 fish species for NGS, we captured microsatellite-containing DNA fragments directly from the shotgun libraries by using the commercially available kit. Next, three runs of multiplexed parallel sequencing were conducted on the 454 GS Junior platform. The resulting sequences for each species included high proportions of microsatellite-containing sequences (from 46 to 79%). Thus, sufficient numbers of primer sets, ranging from 1029 to 6606, were effectively designed for each species. Microsatellite capture and sequencing were completed in about a week, so the time required was substantially reduced. To validate the effectiveness of our strategy, we screened 44 potential primer sets designed for ayu (Plecoglossus altivelis). The results of polymorphisms revealed that allelic variability at 23 markers will be useful for studying population structure. These results prove the effectiveness of our improved approach for microsatellite marker development.

Journal

Conservation Genetics ResourcesSpringer Journals

Published: Feb 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off