RAPD-Based Analysis of Introgression of Barley Genetic Material into the Genome of Alloplasmic Wheat Lines (Hordeum geniculatumAll./Triticum aestivum L.)

RAPD-Based Analysis of Introgression of Barley Genetic Material into the Genome of Alloplasmic... Genomes of three alloplasmic wheat lines obtained on the basis of barley–wheat hybrid Hordeum geniculatumAll. (2n = 28) ×Triticum aestivumL. (2n = 42)(Pyrotrix 28) were examined using random amplified polymorphic DNA (RAPD) analysis. Line L-29 was obtained after first backcross of the initial hybrid with the wheat variety Pyrotrix 28 and ten subsequent self-pollinating generations. This line was represented by euploid plants with typical to the common wheat chromosome number (2n = 42), as well as by aneuploids, which contained an additional telocentric chromosome in the main karyotype (2n = 42 + t). Lines L-26 and L-27 were obtained by two backcrosses of one BC1 plant with the wheat variety Novosibirskaya 67 and one subsequent self-polination of one BC3 plant. Chromosome number in all these plants corresponded to 2n = 40 + 4t. RAPD analysis was carried out using seven primers, which were previously proved to be effective for identification of the barley genome fragments within hybrid genomes of alloplasmic lines. The presence of barley genome fragments in line L-29 was revealed by use of five primers, while in lines L-26 and L-27 these fragments were detected by use of one primer. The significant difference in the number of barley RAPD fragments in the genomes of alloplasmic lines obtained at different backcrossing stages suggests more intense displacement of barley genome during backcrossing compared to self-pollination in BC1 plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

RAPD-Based Analysis of Introgression of Barley Genetic Material into the Genome of Alloplasmic Wheat Lines (Hordeum geniculatumAll./Triticum aestivum L.)

Loading next page...
 
/lp/springer_journal/rapd-based-analysis-of-introgression-of-barley-genetic-material-into-igK0TMp3Vf
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/A:1024405926507
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial