RAP2.6L overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity

RAP2.6L overexpression delays waterlogging induced premature senescence by increasing stomatal... Waterlogging usually results from overuse or poor management of irrigation water and is a serious constraint due to its damaging effects. RAP2.6L (At5g13330) overexpression enhances plant resistance to jasmonic acid, salicylic acid, abscisic acid (ABA) and ethylene in Arabidopsis thaliana. However, it is not known whether RAP2.6L overexpression in vivo improves plant tolerance to waterlogging stress. In this study, the RAP2.6L transcript was induced by waterlogging or an ABA treatment, which was reduced after pretreatment with an ABA biosynthesis inhibitor tungstate. Water loss and membrane leakage were reduced in RAP2.6L overexpression plants under waterlogging stress. Time course analyses of ABA content and production of hydrogen peroxide (H2O2) showed that increased ABA precedes the increase of H2O2. It is also followed by a marked increase in the antioxidant enzyme activities. Increased ABA promoted stomatal closure and made leaves exhibit a delayed waterlogging induced premature senescence. Furthermore, RAP2.6L overexpression caused significant increases in the transcripts of antioxidant enzyme genes APX1 (ascorbate peroxidase 1) and FSD1 (Fe-superoxide dismutase 1), the ABA biosynthesis gene ABA1 (ABA deficient 1) and signaling gene ABH1 (ABA-hypersensitive 1) and the waterlogging responsive gene ADH1 (alcohol dehydrogenase 1), while the transcript of ABI1 (ABA insensitive 1) was decreased. ABA inhibits seed germination and seedling growth and phenotype analysis showed that the integration of abi1-1 mutation into the RAP2.6L overexpression lines reduces ABA sensitivity. These suggest that RAP2.6L overexpression delays waterlogging induced premature senescence and might function through ABI1-mediated ABA signaling pathway. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

RAP2.6L overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity

Loading next page...
Springer Netherlands
Copyright © 2012 by Springer Science+Business Media B.V.
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial