In this paper we continue our study of graph modification problems defined by reducing the rank of the adjacency matrix of the given graph, and extend our results from undirected graphs to modifying the rank of skew-adjacency matrix of oriented graphs. An instance of a graph modification problem takes as input a graph G and a positive integer k, and the objective is to either delete k vertices/edges or edit k edges so that the resulting graph belongs to a particular family $$\mathcal{F}$$ F of graphs. Given a fixed positive integer r, we define $$\mathcal{F}_r$$ F r as the family of oriented graphs where for each $$G\in \mathcal{F}_r$$ G ∈ F r , the rank of the skew-adjacency matrix of G is at most r. Using the family $$\mathcal{F}_r$$ F r we do algorithmic study, both in classical and parameterized complexity, of the following graph modification problems: $$r$$ r -Rank Vertex Deletion, $$r$$ r -Rank Edge Deletion. We first show that both the problems are NP-Complete. Then we show that these problems are fixed parameter tractable (FPT) by designing an algorithm with running time $$2^{\mathcal{O}(k \log r)}n^{\mathcal{O}(1)}$$ 2 O ( k log r ) n O ( 1 ) for $$r$$ r -Rank Vertex Deletion, and an algorithm for $$r$$ r -Rank Edge Deletion running in time $$2^{\mathcal{O}(f(r) \sqrt{k} \log k )}n^{\mathcal{O}(1)}$$ 2 O ( f ( r ) k log k ) n O ( 1 ) . In addition to our FPT results we design polynomial kernels for these problems. Our main structural result, which is the fulcrum of all our algorithmic results, is that for a fixed integer r the size of any “reduced graph” in $$\mathcal{F}_r$$ F r is upper bounded by $$3^r$$ 3 r . This result is of independent interest and generalizes a similar result of Kotlov and Lovász regarding reduced oriented graphs of rank r.
Algorithmica – Springer Journals
Published: Jul 5, 2017
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create lists to | ||
Export lists, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
PDF Discount | 20% off | |
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.
ok to continue