Range Estimation Is NP-Hard for ε2 Accuracy and Feasible for ε2−δ

Range Estimation Is NP-Hard for ε2 Accuracy and Feasible for ε2−δ The basic problem of interval computations is: given a function f(x 1,..., x n) and n intervals [x i, x i], find the (interval) range yof the given function on the given intervals. It is known that even for quadratic polynomials f(x 1,..., x n), this problem is NP-hard. In this paper, following the advice of A. Neumaier, we analyze the complexity of asymptotic range estimation, when the bound ε on the width of the input intervals tends to 0. We show that for small c > 0, if we want to compute the range with an accuracy c ⋅ ε2, then the problem is still NP-hard; on the other hand, for every δ > 0, there exists a feasible algorithm which asymptotically, estimates the range with an accuracy c ⋅ ε2−δ. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reliable Computing Springer Journals

Range Estimation Is NP-Hard for ε2 Accuracy and Feasible for ε2−δ

Loading next page...
Kluwer Academic Publishers
Copyright © 2002 by Kluwer Academic Publishers
Mathematics; Numeric Computing; Approximations and Expansions; Computational Mathematics and Numerical Analysis; Mathematical Modeling and Industrial Mathematics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial