Random clustering ferns for multimodal object recognition

Random clustering ferns for multimodal object recognition We propose an efficient and robust method for the recognition of objects exhibiting multiple intra-class modes, where each one is associated with a particular object appearance. The proposed method, called random clustering ferns, combines synergically a single and real-time classifier, based on the boosted assembling of extremely randomized trees (ferns), with an unsupervised and probabilistic approach in order to recognize efficiently object instances in images and discover simultaneously the most prominent appearance modes of the object through tree-structured visual words. In particular, we use boosted random ferns and probabilistic latent semantic analysis to obtain a discriminative and multimodal classifier that automatically clusters the response of its randomized trees in function of the visual object appearance. The proposed method is validated extensively in synthetic and real experiments, showing that the method is capable of detecting objects with diverse and complex appearance distributions in real-time performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neural Computing and Applications Springer Journals

Random clustering ferns for multimodal object recognition

Loading next page...
 
/lp/springer_journal/random-clustering-ferns-for-multimodal-object-recognition-WY9grVZfPd
Publisher
Springer London
Copyright
Copyright © 2016 by The Natural Computing Applications Forum
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Data Mining and Knowledge Discovery; Probability and Statistics in Computer Science; Computational Science and Engineering; Image Processing and Computer Vision; Computational Biology/Bioinformatics
ISSN
0941-0643
eISSN
1433-3058
D.O.I.
10.1007/s00521-016-2284-x
Publisher site
See Article on Publisher Site

Abstract

We propose an efficient and robust method for the recognition of objects exhibiting multiple intra-class modes, where each one is associated with a particular object appearance. The proposed method, called random clustering ferns, combines synergically a single and real-time classifier, based on the boosted assembling of extremely randomized trees (ferns), with an unsupervised and probabilistic approach in order to recognize efficiently object instances in images and discover simultaneously the most prominent appearance modes of the object through tree-structured visual words. In particular, we use boosted random ferns and probabilistic latent semantic analysis to obtain a discriminative and multimodal classifier that automatically clusters the response of its randomized trees in function of the visual object appearance. The proposed method is validated extensively in synthetic and real experiments, showing that the method is capable of detecting objects with diverse and complex appearance distributions in real-time performance.

Journal

Neural Computing and ApplicationsSpringer Journals

Published: Apr 8, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off